Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Gọi O là giao điểm của AC và BD.
- AB//CD nên góc BAC = góc ACD (so le trong), tương tự góc ABD=góc BDC.
- Theo đề bài góc ACD=gócBDC nên góc BAC=góc ABD.
=>Tam giác ABO cân tại O => 0A=0B.(1)
Tương tự tam giác ODC cân tại O =>OD=OC.(2)
Lại có góc AOD=góc BOC (đối đỉnh ) (3)
Từ (1), (2), (3) suy ra tam giác AOD = tam giác OBC nên suy ra :
+ AD=BC (*)
+ Góc ADB=góc BCA(**)
Từ (*) và (**) suy ra hình thang ABCD cân(hình thang có hai cạnh bên bằng nhau và hai góc ở đáy bằng nhau )
- Gọi O là giao điểm của AC và BD.
- AB//CD nên góc BAC = góc ACD (so le trong), tương tự góc ABD=góc BDC.
- Theo đề bài góc ACD=gócBDC nên góc BAC=góc ABD.
=>Tam giác ABO cân tại O => 0A=0B.(1)
Tương tự tam giác ODC cân tại O =>OD=OC.(2)
Lại có góc AOD=góc BOC (đối đỉnh ) (3)
Từ (1), (2), (3) suy ra tam giác AOD = tam giác OBC nên suy ra :
+ AD=BC (*)
+ Góc ADB=góc BCA(**)
Từ (*) và (**) suy ra hình thang ABCD cân(hình thang có hai cạnh bên bằng nhau và hai góc ở đáy bằng nhau )
- Gọi O là giao điểm của AC và BD.
- AB//CD nên góc BAC = góc ACD (so le trong), tương tự góc ABD=góc BDC.
- Theo đề bài góc ACD=gócBDC nên góc BAC=góc ABD.
=>Tam giác ABO cân tại O => 0A=0B.(1)
Tương tự tam giác ODC cân tại O =>OD=OC.(2)
Lại có góc AOD=góc BOC (đối đỉnh ) (3)
Từ (1), (2), (3) suy ra tam giác AOD = tam giác OBC nên suy ra :
+ AD=BC (*)
+ Góc ADB=góc BCA(**)
Từ (*) và (**) suy ra hình thang ABCD cân(hình thang có hai cạnh bên bằng nhau và hai góc ở đáy bằng nhau )
gọi BD giao với AC tại M
xét tam giác MDC ta có : góc MDC= góc MCD (gt)
=> tam giác MDC cân tại M => MC=MD
ta cũng có góc MAB= góc MBA=> tam giác MAB cân tại M
=> MA=MB
xét tam giác ADM và tam giác BCM
ta có : AM=MB (CMT)
MD=MC (CMT)
góc AMD= góc BMC (đ đ)
=> tam giác ADM = tam giác BCM
=> AD=BC
mà ABCD là hình thang
=> ABCD là hình thang cân
góp ý:
cách của bạn VO PHI HUNG sau khi c/m đc: AC = BD (tức 2 đường chéo bằng nhau)
ta suy ra ngay đc ABCD là hình thang cân
Tuyệt nhiên nếu ta c/m AD = BC (tức 2 cạnh bên bằng nhau)
thì ta ko thể kết luận ABCD là hình thang cân
Dấu hiệu nhận biết 1 hình là hình thang cân:
1) Hình thang có 2 góc kề 1 đáy bằng nhau là hình thang cân
2) Hình thang có 2 đường chéo bằng nhau là hình thang cân
Thấy đúng thì k cho mình nha
Ta có: goc ACD = goc BDC (gt )
=> tam EDC can tai E
=>ED = EC ( 1 )
Ta co : góc A1 = góc ACD ( 2 góc slt của AB//CD )
Ta có : góc B1 = góc BDC ( 2 goc slt của AB//CD )
Mả : góc ACD = góc BDC ( gt )
Do do : goc A1 = goc A2
=> tam giac EAB can tai E
=> EA = EB ( 2 )
Từ ( 1 ) vả ( 2 ) suy ra : EA + EC = EB + ED
Ma : AC = EA + EC ( E nam giua A va C )
: BD = EB + ED ( E nam giua B va D )
Do do : AC = BD ( 3 )
Xét : tam giác ACD va tam giac BDC , co :
AC = BD ( 3 ) cmt
góc ACD = góc BDC ( gt )
CD là cạnh chung
Do do : tam giac ACD = tam giac BDC ( c - g - c )
=> AD = BC ( 2 cạnh tương ứng )
=> ABCD là hình thang cân
A B C D O
Gọi AC cắt BD tại O
Xét tam giác DOC có : góc ODC = góc OCD (gt)
=> tam giác DOC cân tại O
=> DO = OC (đn) (1)
AB // CD (gt)
=> góc BAO = góc OCD (slt)
góc ABO = góc ODC (slt)
mà góc OCD = góc ODC (gt)
=> góc BAO = góc ABO
=> tam giác BAO cân tại O
=> OB = OA
OA + OC = AC
OB + OD = BD và (1)
=> BD = AC ; hình thang ABCD
=> ABCD là hình thang cân (dh)
A B C D 1 1 1 1 E
Gọi E là giao điểm của AC và BD.
+ \(\widehat{C}_1=\widehat{D}_1\Rightarrow\Delta EDC\) cân tại E \(\Rightarrow ED=EC\) ( 1 )
+ AB // CD \(\Rightarrow\widehat{A}_1=\widehat{C}_1\) và \(\widehat{B}_1=\widehat{D_1}\) (Các cặp góc so le trong)
Mà \(\widehat{C}_1=\widehat{D}_1\Rightarrow\widehat{A}_1=\widehat{B_1}\)
\(\Rightarrow\Delta EAB\) cân tại E \(\Rightarrow EA=EB\) ( 2 )
Từ (1) và (2) suy ra: EA + EC = EB + ED hay AC = BD.
Vậy hình thang ABCD có hai đường chéo AC = BD nên là hình thang cân.
Chúc bạn học tốt !!!
I don't now
or no I don't
..................
sorry
- Gọi O là giao điểm của AC và BD.
- AB//CD nên góc BAC = góc ACD (so le trong), tương tự góc ABD=góc BDC.
- Theo đề bài góc ACD=gócBDC nên góc BAC=góc ABD.
=>Tam giác ABO cân tại O => 0A=0B.(1)
Tương tự tam giác ODC cân tại O =>OD=OC.(2)
Lại có góc AOD=góc BOC (đối đỉnh ) (3)
Từ (1), (2), (3) suy ra tam giác AOD = tam giác OBC nên suy ra :
+ AD=BC (*)
+ Góc ADB=góc BCA(**)
Từ (*) và (**) suy ra hình thang ABCD cân(hình thang có hai cạnh bên bằng nhau và hai góc ở đáy bằng nhau )
kẻ CM//a và DN//bB(CM và Aa nằm cùng phía với nửa mặt phẳng chứa tia AC, DN và Bb nằm khác phía với nửa mặt phẳng chứa tia DB
CM//Aa
=>\(\widehat{MCA}=\widehat{A_1}\)
Ta có: CM//a
DN//b
mà a//b
nên CM//DN//a//b
CM//DN
=>\(\widehat{MCD}=\widehat{CDN}\)
DN//Bb
=>\(\widehat{NDB}=\widehat{B_1}\)
Ta có: \(\widehat{ACD}=\widehat{ACM}+\widehat{CDM}=\widehat{CDN}+\widehat{B_1}\)
\(\widehat{CDB}=\widehat{CDN}+\widehat{NDB}=\widehat{CDN}+\widehat{B_1}\)
Do đó: \(\widehat{ACD}=\widehat{CDB}\)