Hãy chứng minh:
\(\sqrt{17}+\sqrt{26}+\sqrt{101}>\sqrt{441}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng số \sqrt[3]{26+15\sqrt{3}}+\sqrt[3]{26-15\sqrt{3}} là bình phương của một số nguyên.
1/√1 > 1/10
1/√2 > 1/10
1/√3 > 1/10
....................
1/√99 > 1/10
1/√100 = 1/10
Cộng từng vế ta có:
1/√1 + 1/√2 + 1/√3 + ... + 1/√100 >100.1/0 = 10 (Đpcm)
\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10=\sqrt{100}>\sqrt{99}\)
mình chỉ giải được phần này thôi
b.A = \(\sqrt{17}\)+\(\sqrt{26}\)+ 1 > \(\sqrt{16}\)+\(\sqrt{25}\)+ 1 = 4 + 5 +1 = 10
B = \(\sqrt{99}\)<\(\sqrt{100}\)= 10
=> A > B
đặt
\(A=\sqrt{7+\sqrt{13}}+\sqrt{7-\sqrt{13}}\)
=>\(\sqrt{2}A=\sqrt{2}\sqrt{7+\sqrt{13}}+\sqrt{2}\sqrt{7-\sqrt{13}}\)
\(=\sqrt{14+2\sqrt{13}}+\sqrt{14-2\sqrt{13}}\)
\(=\sqrt{13+2\sqrt{13}+1}+\sqrt{13-2\sqrt{13}+1}\)
\(=\sqrt{\left(\sqrt{13}+1\right)^2}+\sqrt{\left(\sqrt{13}-1\right)^2}\)
\(=\sqrt{13}+1+\sqrt{13}-1=2\sqrt{13}\)
=>\(A=\frac{2\sqrt{13}}{\sqrt{2}}=\frac{\sqrt{2}\sqrt{2}\sqrt{13}}{\sqrt{2}}=\sqrt{2}\sqrt{13}=\sqrt{26}\)
suy ra : ĐPCM
Dễ mà
ta có: \(\sqrt{17}>\sqrt{16}=4\)
Tương tự: \(\sqrt{26}>\sqrt{25}=5\)
Suy ra: \(\sqrt{17}+\sqrt{26}+1>4+5+1=10\)
Mặt khác:
\(\sqrt{99}< \sqrt{100}=10\)
Vậy \(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)
Ta có: \(\sqrt{17}+\sqrt{26}+\sqrt{101}>\sqrt{16}+\sqrt{25}+\sqrt{100}\)
\(\Rightarrow\sqrt{17}+\sqrt{26}+\sqrt{101}>4+5+10\)
\(\Rightarrow\sqrt{17}+\sqrt{26}+\sqrt{101}>19\)
Mà \(\sqrt{441}=21\)
=> Có sai đề không?