K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2017

Gọi UCLN(n+1,3n+4) là d

Ta có: \(\hept{\begin{cases}n+1⋮d\\3n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}3n+3⋮d\\3n+4⋮d\end{cases}\Rightarrow}\left(3n+4\right)-\left(3n+3\right)⋮d}\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy n+1 và 3n+4 nguyên tố cùng nhau

27 tháng 10 2017

Gọi d là ƯCLN(n+1;3n+4)

Ta có:

\(n+1⋮d\)

\(3n+4⋮d\)

\(\Rightarrow n+1⋮d\Rightarrow3\left(n+1\right)⋮d\Rightarrow3n+3⋮d\)

Vậy \(\left(3n+4\right)-\left(3n+3\right)⋮d\)

\(\Rightarrow1⋮d\)

Vậy 2 số đó là hai số nguyên tố cùng nhau.

2 tháng 12 2017

Gọi d là ƯCLN(5n+7, 3n+4), d \(\in\)N*

\(\Rightarrow\hept{\begin{cases}5n+7⋮d\\3n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(5n+7\right)⋮d\\5\left(3n+4\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}15n+21⋮d\\15n+20⋮d\end{cases}}}\)

\(\Rightarrow\left(15n+21\right)-\left(15n+20\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(5n+7,3n+4\right)=1\)

\(\Rightarrow\) 5n+7 và 3n+4 là hai số nguyên tố cùng nhau.

5 tháng 1 2016

Ta có : k là ƯCLN của 7n + 10 và 5n + 7 
Vậy : 7n + 10 chia hết cho k ; 5n + 7 chia hết cho k 
Hay 5(7n + 10 ) và 7(5n + 7 ) 
      35n + 50 và 35n + 49 chia hết cho k 
=> ĐPCM 

Hai bài kia bạn làm tương tư nhé , chúc may mắn 

30 tháng 11 2018

gọi  ước chung lớn nhất của n + 1 và 3n + 4 là d

ta có n+ 1 chia hết cho d

     3n+ 4 chia hết cho d

ta có 3n + 4 chia hết cho d

ta có n + 1 chia hết cho d

=> 3( n + 1 ) cha hết cho d

=> 3n + 3 chia hết ch d

=> ( 3n + 4 ) - ( 3n + 3 ) chia hết cho d

hay 3n + 4 - 3n - 3

=> 1 chia hết cho d

=> d = 1

ta có ước chung lớn nhất của n + 1 và 3n + 4 là 1

=> n + 1 và 3n + 4 là 2 số nguyên tố cùng nhau

30 tháng 11 2018

Bạn sai rồi đó

n+1và3n+4 phải thuộc ƯCLN =1

Rồi mới gọi nha 

Đó là quan điểm của mik

25 tháng 12 2018

Gọi d là ƯCLN(n + 1, 3n + 4 )

\(\Rightarrow n+1⋮d\Rightarrow3.\left(n+1\right)⋮d\Rightarrow3n+3⋮d\)

3n + 4: Giữ nguyên

\(\left[\left(3n+4\right)-\left(3n+3\right)\right]⋮d\)

\(\left[3n+4-3n-3\right]⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy n+1 và 3n+4 là số nguyên tố cùng nhau

28 tháng 10 2014

Ta chứng minh bằng phản chứng

Giả sử n+1 và 3n+4 có UCLN là k> 1 (k là số tự nhiên)

Khi đó : n+1 = a.k ( Với a là số tự nhiên khác 0)

           3n+4 = b.k ( Với b là số tự nhiên khác 0)

Ta có: b.k= 3n+4 = 3n+3+1 = 3(n+1)+1 = 3.a.k +1 (1)

Vế trái của (1) là một số chia hết cho k , Vế phải của (1) không chia hết cho k. (Mâu thuẫn)

Vậy n+1 và 3n+4 nguyên tố cùng nhau. (Đcpcm)

 

28 tháng 10 2015

Gọi x là ƯC của 2.n+5 va 3.n +7

2.n+5 chia hết cho x=> 3{2n+5} chia hết cho  x

3n+7 chia hết cho  x => 2{3n+7} chia hết cho x

3{2n+5} - 2{3n+7chia hết cho x

6n+15 - 6n+14 chia hết cho x

=>1 chia hết cho x

28 tháng 10 2015

Gọi ƯC(2n+5,3n+7)=d

Ta có: 2n+5 chia hết cho d=>3.(2n+5)=6n+15 chia hết cho d

           3n+7 chia hết cho d=>2.(3n+7)=6n+14 chia hết cho d

=>6n+15-(6n+14) chia hết cho d

=>1 chia hết cho d

=>d=1

=>ƯC(2n+5,3n+7)=1

=>2n+5 và 3n+7 là 2 số nguyên tố cùng nhau

29 tháng 12 2015

a)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp khác 0 là hai số nguyên tố cùng nhau

b)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp là hai số nguyên tố cùng nhau

tick nha

14 tháng 11 2017

a)  Gọi ƯCLN(3n+1,6n+1)=d

=> 3n+1 và 6n+1 chia hết chưa d

=> 2(3n+1) và 6n+1 chia hết chưa d

=>6n+2 và 6n+1 chia hết cho d

=>(6n+2)-(6n+1)=1 chia hết cho d

=>d=1

=> 3n+1 và 6n+1 nguyên tố cùng nhau

b, Gọi ƯCLN(2n+3,3n+4)=d

=>2n+3 và 3n+4 chia hết cho d

=>3(2n+3) và 2(3n+4) chia hết cho d

=>6n+9 và 6n+8 chia hết cho d

=>(6n+9)-(6n+8)=1 chia hết cho d

=>d=1

=>2n+3 và 3n+4 nguyên tố cùng nhau