Chứng tỏ (5a+3b,13a+8b)=(a,b)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ong số học, bội số chung nhỏ nhất (hay còn gọi tắt là bội chung nhỏ nhất, viết tắt là BCNN, tiếng Anh: least common multiple hoặc lowest common multiple (LCM) hoặc smallest common multiple) của hai số nguyên a và b là số nguyên dương nhỏ nhất chia hết cho cả a và b.[1] Tức là nó có thể chia cho a và b mà không để lại số dư. Nếu a hoặc b là 0, thì không tồn tại số nguyên dương chia hết cho a và b, khi đó quy ước rằng LCM(a, b) là 0.
Định nghĩa trên đôi khi được tổng quát hoá cho hơn hai số nguyên dương: Bội chung nhỏ nhất của a1,..., an là số nguyên dương nhỏ nhất là bội số của a1,..., an.
đặt A=5a+3b B=13a+8b
vì a,b thuộc N và 5a+3b chia hết 2012
=>:13A= 13(5a+3b)=65a+39b chia hết cho 2012 (1) và 13a+8b chia hết 2012 => 5B=5(13a+8b)=65a+40b chia hết cho 2012 (2)
Từ (1) và (2) => [65a+40b - (65a + 39b)] chia hết 2012
<=> 65a+40b - 65a - 39b chia hết cho 2012
<=> b chia hết cho 12
=> 3b chia hết cho 2012 mà 5a +3b chia hết cho 2012
=> 5a chia hết cho 2012 mà UCLN(5,2012)=1
=> a chia hết cho 2012
Vậy a,b thuộc N 5a+3b và 13a+8b chia hết cho 2012 thì a và b cũng chia hết cho 2012