K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2017

Ta có : 405n = ......5

  2405 = 2404 . 2 = ( ........6 ) . 2 = .......2

Mà m là số chính phương nên có chữ số tận cùng khác 3 . Vậy A có chữ số tận cùng khác 0

\(\Rightarrow A⋮̸10\left(đpcm\right)\)

8 tháng 10 2023

help me

7 tháng 12 2016

mi tích tau tau tích mi xong tau trả lời nka

 việt nam nói là làm

2 tháng 12 2017

a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^

9 tháng 1 2016

A = 405n + 2405 + m2

405 n tận cùng là 5

2405 = (24)101 . 2

= (...6)101 . 2 = (..6).2 = (..2)

m2 tận cùng là 0;1;4;5;6;9

Vậy chữ số tận cùng của A có thể là 7 ; 8 ; 3 ; 2 ; 6

n không có tận cùng là 0 

Vậy A không chia hết cho 10 

7 tháng 3 2019

phai la 7 8 1 2 3 6 chu ko phai 7 8 3 2 6

14 tháng 1 2021

Ta có \(405^n\)có tận cùng là 5 ( vì 405 có tận cùng là 5 ) 

Khì lũy thừa 2 lên thì ta được tận cùng của \(2^n\) có quy luật là  2-4-8-6-2-...  ( là một nhóm gồm 4 chữ số 2,4,8,6 ) 

Dựa trên quy luật trên ta có : 405 : 4 = 101 dư 1 . Đếm theo quy luật trên thì \(\Rightarrow\)\(^{2^{405}}\)sẽ có tận cùng là 1 

Ta có : (...5) + (...2) + \(m^2\)= (...7) + \(m^2\)

\(m^2\)( m \(\in\)\(ℕ\)) thì \(m^2\)sẽ có tận cùng là các chữ số 0,1,4,5,6,9

Vậy với \(405^n+2^{405}+m^2\)sẽ có tận cùng là 

TH1 : \(405^n+2^{405}+m^2\)= (...5) + (...2) + (...0) = (...7)

TH2 : \(405^n+2^{405}+m^2\)= (...5) + (...2) +(...1) = (...8)

TH3 : \(405^n+2^{405}+m^2\)= ( ..5) + (..2) + (...4) = (....1)

TH4 :\(405^n+2^{405}+m^2\)= (...5) + (...2) + (...5) = (...2)

TH5 : \(405^n+2^{405}+m^2\)= (...5) + (...2) + (...6) = (...3)

TH6 : \(405^n+2^{405}+m^2\)= (...5) + (...2) + (...9) = ( ...6) 

\(\Rightarrow\)\(405^n+2^{405}+m^2\)không chia hết cho 10 ( vì phải có tận cùng = 0 ) \(\Rightarrow\)dpcm