K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7

`(-x^3  . y)^5 : (-x^12 . y^2)`

`= (-x^15  . y^5) : (-x^12 . y^2)`

`=` \(\dfrac{-x^{15}.y^5}{-x^{12}.y^2}\)

`=` \(x^3.y^3\)

`= 2^3 .` \(\left(-\dfrac{1}{2}\right)^3\)

`=` \(\left(2.\dfrac{-1}{2}\right)^3\)

`=` \(\left(-1\right)^3=-1\)

31 tháng 7 2020

a. \(-x^2+4x+y^2-12y+47\)

\(=-\left(x^2-4x-y^2+17y-47\right)\)

\(=-\left[x^2-4x+4-\left(y^2-12y+36\right)-15\right]\)

\(=-\left[\left(x-2\right)^2-\left(y-6\right)^2-15\right]\)

Vì  \(\left(x-2\right)^2-\left(y-6\right)^2-15\ge-15\forall x\)

\(\Rightarrow-\left[\left(x-2\right)^2-\left(y-6\right)^2-15\right]\le15\)

Vậy GTLN của bt trên là 15   \(\Leftrightarrow x=2;y=6\)

31 tháng 7 2020

b.  \(-x^2-x-y^2-3y+13\)

\(=\frac{1}{4}\left(-4x^2-4x-4y^2-12y+52\right)\)

\(=\frac{1}{4}\left[-\left(2x+1\right)^2-\left(2y+3\right)^2+42\right]\)

Vì \(\frac{1}{4}\left[-\left(2x+1\right)^2-\left(2y+3\right)^2+42\right]\le42\forall x;y\)

\(\Rightarrow-\left(2x+1\right)^2-\left(2y+3\right)^2+42\le\frac{21}{2}\forall x;y\)

Vậy GTLN của bt trên là 21/2  \(\Leftrightarrow x=-\frac{1}{2};y=-\frac{3}{2}\)

13 tháng 10 2021
Lấy 1 -1 2

a: \(A=5\cdot2\cdot\left(-3\right)-10+3\cdot\left(-3\right)=-30-10-9=-49\)

 b: \(B=8\cdot1\cdot\left(-1\right)^2-1\cdot\left(-1\right)-2\cdot1-10\)

=8+1-2-10

=-3

30 tháng 3 2022

a: A=5⋅2⋅(−3)−10+3⋅(−3)=−30−10−9=−49

 b: B=8⋅1⋅(−1)2−1⋅(−1)−2⋅1−10

=8+1-2-10

=-3

25 tháng 4 2020

bài 1 : 

B=15-3x-3y

a) x+y-5=0 

=>x+y=-5

B=15-3x-3y <=> B=15-3(x+y)

Thay x+y=-5 vào biểu thức  B ta được :

B=15-3(-5)

B=15+15

B=30

Vậy giá trị của biểu thức B=15-3x-3y tại x+y+5=0 là 30

b)Theo đề bài ; ta có :

B=15-3x-3.2=10

15-3x-6=10

15-3x=16

3x=-1

\(x=\frac{-1}{3}\)

Bài 2:

a)3x2-7=5

3x2=12

x2=4

x=\(\pm2\)

b)3x-2x2=0

=> 3x=2x2

=>\(\frac{3x}{x^2}=2\)

=>\(\frac{x}{x^2}=\frac{2}{3}\)

=>\(\frac{1}{x}=\frac{2}{3}\)

=>\(3=2x\)

=>\(\frac{3}{2}=x\)

c) 8x2 + 10x + 3 = 0

=>\(8x^2-2x+12x-3=0\)

\(\Rightarrow\left(2x+3\right)\left(4x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x+3=0\\4x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-3\\4x=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-3}{2}\\x=\frac{1}{4}\end{cases}}}\)

vậy \(x\in\left\{-\frac{3}{2};\frac{1}{4}\right\}\)

Bài 5 đề  sai  vì  |1| không thể =2

25 tháng 10 2023

a: Khi x=2 và y=-3 thì \(x^2+2y=2^2+2\cdot\left(-3\right)=4-6=-2\)

b: \(A=x^2+2xy+y^2=\left(x+y\right)^2\)

Khi x=4 và y=6 thì \(A=\left(4+6\right)^2=10^2=100\)

c: \(P=x^2-4xy+4y^2=\left(x-2y\right)^2\)

Khi x=1 và y=1/2 thì \(P=\left(1-2\cdot\dfrac{1}{2}\right)^2=\left(1-1\right)^2=0\)

a: \(A=x^3y^2\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+xy\left(2-1\right)+y-1=xy+y-1\)

Bậc là 2

b: Thay x=0,1 và y=-2 vào A, ta được:

\(A=-2\cdot0.1+\left(-2\right)-1=-0.2-1-2=-3.2\)

27 tháng 2 2022

\(a,A=2xy+\dfrac{1}{2}x^3y^2-xy-\dfrac{1}{2}x^3y^2+y-1\\ =\left(2xy-xy\right)+\left(\dfrac{1}{2}x^3y^2-1\dfrac{1}{2}x^3y^2\right)+y-1\\ =xy+y-1\)

Bậc: 2

b, Thay x=0,1 và y=-2 vào A ta có:

\(A=xy+y-1=0,1.\left(-2\right)+\left(-2\right)-1=-0,2-2-1=-3,2\)

4 tháng 7 2018

\(\left(x+3\right)\left(x-1\right)-x\) \(\left(x-5\right)=11\)

\(x^2-x+3x-3\) \(-x^2+5x=11\)

\(7x-3=11\)

\(7x=14\)

\(x=2\)

\(=\left(x+3y\right)\) \(\left(x^2-3xy+9^2\right)\)

\(=\left(\frac{1}{2}+3.\frac{1}{2}\right)\) \(\left(\frac{1}{4}-3.\frac{1}{2}.\frac{1}{2}+81\right)\)

\(=2.\frac{161}{2}\)

\(=161\)

Đặt \(A=\left(\dfrac{2}{5}x^3y\right)\cdot\left(-5xy\right)\)

\(=\left(\dfrac{2}{5}\cdot\left(-5\right)\right)\cdot x^3\cdot x\cdot y\cdot y\)

\(=-2x^4y^2\)

Thay x=-1 và y=1/2 vào A, ta được:

\(A=-2\cdot\left(-1\right)^4\cdot\left(\dfrac{1}{2}\right)^2=-2\cdot\dfrac{1}{4}=-\dfrac{1}{2}\)