K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2017

\(\left(x^2-x+1\right)\left(x^2-x-1\right)\)

\(=\left[\left(x^2-x\right)+1\right]\left[\left(x^2-x\right)-1\right]\)

\(=\left(x^2-x\right)^2-1^2\)

\(=x^4-2x^3+x^2-1\)

24 tháng 10 2017

\(=\left(x^2-x\right)^2-1\)

đến đây tự rút tiếp nha

5 tháng 10 2021

\(=x^6-6x^4+12x^2-8-x^3+x+6x^2-18x\\ =x^6-6x^4-x^3+18x^2-17x-8\)

5 tháng 10 2021

\(=\left(x-\dfrac{1}{3}\right)\left(\dfrac{4}{3}x+\dfrac{1}{9}-x+\dfrac{1}{3}\right)\\ =\left(x-\dfrac{1}{3}\right)\left(\dfrac{1}{3}x+\dfrac{4}{9}\right)\\ =\dfrac{1}{3}x^2+\dfrac{4}{9}x-\dfrac{1}{9}x-\dfrac{4}{27}\\ =\dfrac{1}{3}x^2+\dfrac{1}{3}x-\dfrac{4}{27}\)

21 tháng 11 2017

Cái này dễ mà bn

Ta có:\(A=\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\left(ĐK:x\ne2;-3\right)\)

    \(\Leftrightarrow A=\frac{x+2}{x+3}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{1}{x-2}\)

    \(\Leftrightarrow A=\frac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}\)

     \(\Leftrightarrow A=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}=\frac{x+4}{x-2}\)

21 tháng 11 2017

\(A=\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\)

\(\Leftrightarrow A=\frac{x}{\left(2+3\right)}^2-\frac{5}{x^3-6}+\left(2-x\right)\)

\(\Leftrightarrow A=\frac{x}{5}^2-\frac{5}{x^3-6}+\left(2-x\right)\)

Ps: Không chắc đâu nhé! Thánh đây mới lớp 6 thôi

13 tháng 3 2022

đk : x >= 0 ; x khác 4 

\(B=\left(\dfrac{\sqrt{x}-2+\sqrt{x}+2}{x-4}\right).\dfrac{\sqrt{x}-2}{2}=\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{2\left(x-4\right)}=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)

24 tháng 5 2017

à bài này dễ mà 

đầu tiên nhá:không biết,tiếp theo:ko biết.Thế thôi còn lại bạn tự giải

9 tháng 7 2017

bạn sử dụng hằng đẳng thức nhé .Mình bít nhg lười viết nắm

18 tháng 7 2017

\(=\frac{1}{\sqrt{x}\left(x\sqrt{x}-1\right)}:\frac{\sqrt{x}+1}{\sqrt{x}\left(x+\sqrt{x}+1\right)}\)

\(=\frac{1}{\sqrt{x}\left(\sqrt{x^3}-1\right)}.\frac{\sqrt{x}\left(x+\sqrt{x}+1\right)}{\sqrt{x}+1}\)

\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{\sqrt{x}\left(x+\sqrt{x}+1\right)}{\sqrt{x}+1}\)

\(=\frac{1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{1}{x-1}\)

25 tháng 10 2015

a) (2x + 1)2 + 2(2x + 1)(5x - 1) + (5x - 1)2 = (2x + 1 + 5x - 1)2 = (7x)2 = 49x2

b) (x2 - 1)(x + 2) - (x - 1)(x2 + x + 1) = x3 + 2x2 - x - 2 - x3 + 1 = 2x2 - x - 1