Q=1/(x+2)+2/(y+1) tim gtnn với x+2y=10 x>-2,y>-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
# Bài 1
* Ta cm BĐT sau \(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\) (1) bằng cách biến đổi tương đương
* Với \(x,y>0\) áp dụng (1) ta có
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{\left(\sqrt{x}\right)^2}+\dfrac{1}{\left(\sqrt{y}\right)^2}\ge\dfrac{1}{2}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)^2\)
Mà \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2}\)
\(\Rightarrow\) \(\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)^2\le1\) \(\Leftrightarrow\) \(0< \dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\le1\) (I)
* Ta cm BĐT phụ \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) với \(a,b>0\) (2)
Áp dụng (2) với x , y > 0 ta có
\(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\ge\dfrac{4}{\sqrt{x}+\sqrt{y}}\) (II)
* Từ (I) và (II) \(\Rightarrow\) \(\dfrac{4}{\sqrt{x}+\sqrt{y}}\le1\)
\(\Leftrightarrow\) \(\sqrt{x}+\sqrt{y}\ge4\)
Dấu "=" xra khi \(x=y=4\)
Vậy min \(\sqrt{x}+\sqrt{y}=4\) khi \(x=y=4\)
Câu 1:
\(4x^2+8xy+28x+28y+8y^2+40=0\)
\(\Leftrightarrow\left(2x+2y+7\right)^2+4y^2-9=0\)
\(\Leftrightarrow\left(2x+2y+7\right)^2=9-4y^2\le9\)
\(\Rightarrow-3\le2x+2y+7\le3\)
\(\Leftrightarrow-8\le2y+2y+2\le-2\)
\(\Rightarrow-4\le x+y+1\le-1\)
\(\Rightarrow S_{max}=-1\) khi \(\left\{{}\begin{matrix}x=-2\\y=0\end{matrix}\right.\)
\(S_{min}=-4\) khi \(\left\{{}\begin{matrix}x=-5\\y=0\end{matrix}\right.\)
Câu 2:
\(x^2+y^2=6xy\Rightarrow\frac{x}{y}+\frac{y}{x}=6\)
Đặt \(\frac{x}{y}=a>1\Rightarrow a+\frac{1}{a}=6\Rightarrow a^2-6a+1=0\Rightarrow a=3+2\sqrt{2}\)
\(\Rightarrow P=\frac{x+y}{x-y}=\frac{\frac{x}{y}+1}{\frac{x}{y}-1}=\frac{a+1}{a-1}=\frac{3+2\sqrt{2}+1}{3+2\sqrt{2}-1}=\sqrt{2}\)
\(Q=\frac{1}{x+2}+\frac{2}{y+1}=\frac{1}{x+2}+\frac{4}{2y+2}\ge\frac{\left(1+2\right)^2}{x+2+2y+2}=\frac{3^2}{10+4}=\frac{9}{14}\)
Dấu \(=\)xảy ra khi \(\hept{\begin{cases}x+2y=10\\\frac{1}{x+2}=\frac{2}{2y+2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{8}{3}\\y=\frac{11}{3}\end{cases}}\).