\(\sqrt{ }\)x-3=11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-....-\frac{1}{\sqrt{24}-\sqrt{25}}\)
\(=\frac{\sqrt{1}+\sqrt{2}}{(\sqrt{1}-\sqrt{2})(\sqrt{1}+\sqrt{2})}-\frac{\sqrt{2}+\sqrt{3}}{(\sqrt{2}-\sqrt{3})(\sqrt{2}+\sqrt{3})}+\frac{\sqrt{3}+\sqrt{4}}{(\sqrt{3}-\sqrt{4})(\sqrt{3}+\sqrt{4})}-...-\frac{\sqrt{24}+\sqrt{25}}{(\sqrt{24}-\sqrt{25})(\sqrt{24}+\sqrt{25})}\)
\(=\frac{\sqrt{1}+\sqrt{2}}{-1}-\frac{\sqrt{2}+\sqrt{3}}{-1}+\frac{\sqrt{3}+\sqrt{4}}{-1}-...-\frac{\sqrt{24}+\sqrt{25}}{-1}\)
\(=\frac{(1+\sqrt{2})-(\sqrt{2}+\sqrt{3})+(\sqrt{3}+\sqrt{4})-...-(\sqrt{24}+\sqrt{25})}{-1}\)
\(=\frac{1-\sqrt{25}}{-1}=4\)
\(B=\frac{5}{4+\sqrt{11}}+\frac{11-3\sqrt{11}}{\sqrt{11}-3}-\frac{4}{\sqrt{5}-1}+\sqrt{(\sqrt{5}-2)^2}\)
\(=\frac{5(4-\sqrt{11})}{(4+\sqrt{11})(4-\sqrt{11})}+\frac{\sqrt{11}(\sqrt{11}-3)}{\sqrt{11}-3}-\frac{4(\sqrt{5}+1)}{(\sqrt{5}-1)(\sqrt{5}+1)}+\sqrt{5}-2\)
\(=\frac{5(4-\sqrt{11})}{5}+\sqrt{11}-\frac{4(\sqrt{5}+1)}{4}+\sqrt{5}-2\)
\(=4-\sqrt{11}+\sqrt{11}-(\sqrt{5}+1)+\sqrt{5}-2\)
\(=1\)
Thay \(x = 2\) vào phương trình \(\sqrt { - 2{x^2} - 2x + 11} = \sqrt { - {x^2} + 3} \) ta thấy không thỏa mãn vì dưới dấu căn là \( - 1\) không thỏa mãn
Vậy \(x = 2\) không là nghiệm của phương trình do đó lời giải như trên là sai.
a: \(=6+2\sqrt{11}-4+\sqrt{11}=2+3\sqrt{11}\)
b: \(=\dfrac{3x+9\sqrt{x}-2x+4\sqrt{x}}{\left(\sqrt{x}+3\right)\left(x-2\sqrt{x}\right)}\cdot\dfrac{\left(\sqrt{x}+3\right)^2}{\sqrt{x}+13}=\dfrac{\sqrt{x}+3}{x-2\sqrt{x}}\)
a, ĐK: \(x\ge11\)
\(\sqrt{x+\sqrt{x-11}}+\sqrt{x-\sqrt{x-11}}=4\)
\(\Leftrightarrow x+\sqrt{x-11}+x-\sqrt{x-11}+2\sqrt{x^2-x+11}=16\)
\(\Leftrightarrow2x+2\sqrt{x^2-x+11}=16\)
\(\Leftrightarrow x+\sqrt{x^2-x+11}=8\)
Ta thấy \(x+\sqrt{x^2-x+11}>11>\text{}8\)
\(\Rightarrow\) phương trình vô nghiệm.
\(a,\sqrt{x+\sqrt{x-11}}+\sqrt{x-\sqrt{x-11}}=4\left(x\ge11\right)\\ \Leftrightarrow x+\sqrt{x-11}+x-\sqrt{x-11}+2\sqrt{\left(x+\sqrt{x-11}\right)\left(x-\sqrt{x-11}\right)}=16\\ \Leftrightarrow2x+2\sqrt{x^2-x+11}=16\\ \Leftrightarrow x+\sqrt{x^2-x+11}=8\\ \Leftrightarrow\sqrt{x^2-x+11}=8-x\\ \Leftrightarrow x^2-x+11=x^2-16x+64\\ \Leftrightarrow15x=53\\ \Leftrightarrow x=\dfrac{53}{15}\left(ktm\right)\)
\(b,\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\left(x\ge\dfrac{5}{2}\right)\\ \Leftrightarrow\sqrt{2x-5+6\sqrt{2x-5}+9}+\sqrt{2x-5-2\sqrt{2x-5}+1}=4\\ \Leftrightarrow\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\\ \Leftrightarrow\sqrt{2x-5}+3+\left|\sqrt{2x-5}-1\right|=4\\ \Leftrightarrow\left|\sqrt{2x-5}-1\right|=1-\sqrt{2x-5}\\ \Leftrightarrow\sqrt{2x-5}-1\le0\\ \Leftrightarrow\sqrt{2x-5}\le1\\ \Leftrightarrow2x-5\le1\Leftrightarrow x\le\dfrac{5}{2}\\ \Leftrightarrow x=\dfrac{5}{2}\)
a: \(=\dfrac{2x-6\sqrt{x}+x+4\sqrt{x}+3-3+11\sqrt{x}}{x-9}\)
\(=\dfrac{3x+9\sqrt{x}}{x-9}=\dfrac{3\sqrt{x}}{\sqrt{x}-3}\)
b: Khi x=11+6 căn 2 thì \(M=\dfrac{3\left(3+\sqrt{2}\right)}{3+\sqrt{2}-3}=\dfrac{9+3\sqrt{2}}{\sqrt{2}}=\dfrac{9\sqrt{2}+6}{2}\)
c: M<1
=>\(\dfrac{3\sqrt{x}-\sqrt{x}+3}{\sqrt{x}-3}< 0\)
=>căn x-3<0
=>0<x<9
`a,` \(M=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}-\dfrac{3-11\sqrt{x}}{9-x}\) \(\left(x\ne\pm3;x>0\right)\)
\(M=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{x-9}+\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{x-9}-\dfrac{3+11\sqrt{x}}{x-9}\)
\(M=\dfrac{2x-6\sqrt{x}}{x-9}+\dfrac{x+3\sqrt{x}+\sqrt{x}+3}{x-9}-\dfrac{3+11\sqrt{x}}{x-9}\)
\(M=\dfrac{3x+9\sqrt{x}}{x-9}\)
\(M=\dfrac{3\sqrt{x}\left(\sqrt{x}+3\right)}{x-9}\)
\(M=\dfrac{3\sqrt{x}}{\sqrt{x}-3}\)
`b,`Ta có :
\(M=\dfrac{3\sqrt{11+6\sqrt{2}}}{\sqrt{11+6\sqrt{2}}-3}\)
\(M=\dfrac{3\sqrt{\left(3+\sqrt{2}\right)^2}}{\sqrt{\left(3+\sqrt{2}\right)^2}-3}\)
\(M=\dfrac{3\left(3+\sqrt{2}\right)}{3+\sqrt{2}-3}\)
\(M=\dfrac{9+3\sqrt{2}}{\sqrt{2}}\)
\(M=\dfrac{6+9\sqrt{2}}{2}\)
`c,` Để `M<1` Ta có :
\(\dfrac{3\sqrt{x}}{\sqrt{x}-3}< 1\)
\(\dfrac{3\sqrt{x}}{\sqrt{x}-3}-1< 0\)
\(\dfrac{3\sqrt{x}}{\sqrt{x}-3}-\dfrac{\sqrt{x}-3}{\sqrt{x}-3}< 0\)
\(\dfrac{2\sqrt{x}+3}{\sqrt{x}-3}< 0\)
\(\sqrt{x}-3< 0\) ( vì \(2\sqrt{x}+3>0\) )
\(\sqrt{x}< 3\)
\(x< 9\)
Đối chiếu ĐKXĐ ta có : `0<x<9`
Đk:\(x\ge0;x\ne1\)
\(=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{15\sqrt{x}-11-\left(3x+7\sqrt{x}-6\right)-\left(2x+\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{-\left(\sqrt{x}-1\right)\left(5\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)\(=\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}\)
Vậy...
Ta có: \(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(=\dfrac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{15\sqrt{x}-11-\left(3x+7\sqrt{x}-6\right)-\left(2x+\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
\(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}+\dfrac{3-11\sqrt{x}}{9-x}\\ =\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}-\dfrac{3-11\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\\ =\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{3-11\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\\ =\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}+\sqrt{x}+3-3+11\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\\ =\dfrac{3x+15\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
Ta có: \(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{3\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}-\left(2x-2\sqrt{x}+3\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-3x+6\sqrt{x}-11-2x-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x+5\sqrt{x}-8}{\left(\sqrt{x}+3\right)\cdot\left(\sqrt{x}-1\right)}\)
\(P=\dfrac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{-5x+5\sqrt{x}+2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(-5\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
\(\sqrt{x-3}=11\left(x\ge3\right)\\ \Rightarrow\left(\sqrt{x-3}\right)^2=11^2\\ \Rightarrow x-3=11^2\\ =>x-3=121\\ =>x=121+3\\ =>x=124\)
Vậy: ...
x=124