K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2018

+, Nếu x = 0 => ko tồn tại y thuộc Z

+, Nếu x khác 0 => x^2 >= 1 => x^2-1 >= 0

Có : y^3 = x^3+2x^2+3x+2 > x^3 ( vì 2x^2+3x+2 > 0 )

Lại có : y^3 = (x^3+3x^3+3x+1)-(x^2-1) = (x+1)^3 - (x^2-1) < = (x+1)^3

=> x^3 < y^3 < = (x+1)^3

=> y^3 = (x+1)^3

=> x^2-1 = 0

=> x=-1 hoặc x=1

+, Với x=-1 thì y = 0

+, Với x=1 thì y = 2

Vậy .............

Tk mk nha

26 tháng 1 2018

Ta có: \(x^3+2x^2+3x+2=y^3\)                             (1)

Xét \(2x^2+3x+2=2\left(x^2+\frac{3}{2}x\right)+2=2\left(x^2+\frac{3}{2}x+\frac{9}{16}\right)+2-2.\frac{9}{16}\)

\(=2\left(x+\frac{3}{4}\right)^2+\frac{7}{8}\) Vì \(\left(x+\frac{3}{4}\right)^2\ge0\Rightarrow2\left(x+\frac{3}{4}\right)^2+\frac{7}{8}\ge\frac{7}{8}>0\)

\(\Rightarrow y^3>x^3\Rightarrow y^3\ge\left(x+1\right)^3\)

\(\Rightarrow x^3+2x^2+3x+2\ge\left(x+1\right)^3\) \(\Rightarrow x^3+2x^2+3x+2\ge x^3+3x^2+3x+1\)

\(\Rightarrow x^3+3x^2+3x+1-x^3-2x^2-3x-2\le0\)

\(\Rightarrow x^2-1\le0\Rightarrow x^2\le1\) Vì \(x\in Z\Rightarrow\orbr{\begin{cases}x^2=1\\x^2=0\end{cases}}\)

+ TH1: x2 = 0 => x =0 Thay vào pt (1) ta được y3 = 2 (loại) vì y nguyên

+ TH2 : x2 = 1 => \(\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)

Thay x=1 vào pt (1) ta đc: 1+2+3+2 = 8 = y3 => y = 2

Thay x= -1 vào pt (1) ta đc: -1 + 2 -3 +2 = 0 =y3 => y = 0

Vậy cặp (x;y) là (1;2) ; (-1;0).

a: \(\Delta=2^2-4\cdot1\cdot\left(-30\right)=124\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-2-2\sqrt{31}}{2}=-1-\sqrt{31}\\x_2=-1+\sqrt{31}\end{matrix}\right.\)

b: \(2x^2-3x-5=0\)

\(\Leftrightarrow2x^2-5x+2x-5=0\)

=>(2x-5)(x+1)=0

=>x=5/2 hoặc x=-1

8 tháng 3 2022

a.\(x^2+2x-30=0\)

\(\Delta=2^2-4.\left(-30\right)=4+120=124>0\)

=> pt có 2 nghiệm

\(\left\{{}\begin{matrix}x=\dfrac{-2+\sqrt{124}}{2}=\dfrac{-2+2\sqrt{31}}{2}=-1+\sqrt{31}\\x=\dfrac{-2-\sqrt{124}}{2}=-1-\sqrt{31}\end{matrix}\right.\)

b.\(2x^2-3x-5=0\)

Ta có: a-b+c=0

\(\Rightarrow\left\{{}\begin{matrix}x=-1\\x=\dfrac{5}{2}\end{matrix}\right.\)( vi-ét )

12 tháng 11 2021

PT có 2 no âm phân biệt \(\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(-3\right)^2-4\left(-2\right)\left(-m+1\right)>0\\x_1+x_2=\dfrac{3}{-2}< 0\\x_1x_2=\dfrac{-m+1}{-2}>0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}17-8m>0\\-m+1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{17}{8}\\m>1\end{matrix}\right.\Leftrightarrow1< m< \dfrac{17}{8}\)

12 tháng 11 2021

Mình chưa hiểu ngay chỗ \(\dfrac{-m+1}{-2}\)> 0  ➜ -m+1<0   v   á.

NV
4 tháng 3 2022

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{3}{2}\\x_1x_2=-\dfrac{1}{2}\end{matrix}\right.\)

\(B=\dfrac{4x_1-1}{x_2}+\dfrac{4x_2-1}{x_1}=\dfrac{4x_1^2-x_1+4x_2^2-x_2}{x_1x_2}\)

\(=\dfrac{4\left(x_1+x_2\right)^2-8x_1x_2-\left(x_1+x_2\right)}{x_1x_2}=\dfrac{4.\left(-\dfrac{3}{2}\right)^2-8.\left(-\dfrac{1}{2}\right)-\left(-\dfrac{3}{2}\right)}{-\dfrac{1}{2}}=-29\)

18 tháng 4 2022

lớp 9=))???

18 tháng 4 2022

hong giải thì bín :v

11 tháng 11 2021

\(1,\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(-3\right)^2-4\left(-2\right)\left(-m+1\right)>0\\x_1+x_2=\dfrac{3}{-2}< 0\\x_1x_2=\dfrac{-m+1}{-2}>0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}17-8m>0\\-m+1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{17}{8}\\m>1\end{matrix}\right.\Leftrightarrow1< m< \dfrac{17}{8}\)

\(2,\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(-4\right)^2-4\left(-3\right)\left(-2m+1\right)\ge0\\x_1+x_2=\dfrac{4}{-3}< 0\\x_1x_2=\dfrac{-2m+1}{-3}>0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}28-24m\ge0\\-2m+1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\le\dfrac{7}{6}\\m>\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\dfrac{1}{2}< m\le\dfrac{7}{6}\)

11 tháng 11 2021

Giúp em câu e bài 1,bài 2,3 với 

27 tháng 3 2022

-2x^2 + 3x -1 = -2x^2 +2x + x -1 
                      =-2x(x-1) + (x - 1)
                      =(-2x+1)(x-1)

27 tháng 3 2022

Do không có vế thứ 2 nên mình chỉ giải đc đến đây

a: =>7-x=0

hay x=7

b: \(\Leftrightarrow\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\left(x+5\right)\left(3x-8\right)=0\)

hay \(x\in\left\{\sqrt{2};-\sqrt{2};-5;\dfrac{8}{3}\right\}\)

a: =>-x+7=0

hay x=7

b: \(\Leftrightarrow\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\left(x+5\right)\left(3x-8\right)=0\)

hay \(x\in\left\{\sqrt{2};-\sqrt{2};-5;\dfrac{8}{3}\right\}\)