K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2017

hoc moi lop 5 

11 tháng 3 2022

Đây Là Lớp Mấy

13 tháng 4 2016

S=10/2.12+10/12.22+10/22.32+10/32.42+.......+10/2002.2012

S=1/2-1/12+1/12-1/22+1/22-1/32+1/32-1/42+.....+1/2002-1/2012

S=1/2-1/2012

S=????

bạn tự tính nhé

13 tháng 4 2016

S=10.1/10{1/2-1/12+1/12-1/22+1/22-1/32+...+1/2002-1/2012}
  =1/2-1/2012
  =1005/2012

27 tháng 6 2017

\(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+...+\dfrac{19}{9^{10}.10^2}\)

\(=\dfrac{1}{1^2}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+...+\dfrac{1}{9^{10}}-\dfrac{1}{10^2}\)

\(=1-\dfrac{1}{10^2}< 1\)

\(\Rightarrowđpcm\)

27 tháng 6 2017

dpcm là chi z

8 tháng 3 2018

dạng này mik tưởng giảm tải mà

bạn ơi đề sai ở chỗ dấu "  ,  "  phải không?? bạn hãy sửa đề đi 

30 tháng 4 2015

Bạn Nguyễn Thị Bích Phương ơi, mình sửa lại đề rồi đó. Bạn giải giúp mình với.

10 tháng 6 2017

\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+.....+\frac{19}{9^2.10^2}\)

\(=\frac{3}{1.4}+\frac{5}{4.9}+.....+\frac{19}{81.100}\)

\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+....+\frac{1}{81}-\frac{1}{100}\)

\(=1-\frac{1}{100}< 1\)

10 tháng 6 2017

\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)

\(=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+...+\frac{10^2-9^2}{9^2.10^2}\)

\(=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{9^2}-\frac{1}{10^2}\)

\(=1-\frac{1}{10^2}< 1\)

1 tháng 7 2021

Đặt A = \(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+....+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}\) 

\(A=\left(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{9}\right)+\left(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{14}\right)+\left(\frac{1}{15}+\frac{1}{16}+...+\frac{1}{19}\right)\) 

\(\Rightarrow A< \left(\frac{1}{5}+...+\frac{1}{5}\right)+\left(\frac{1}{10}+...+\frac{1}{10}\right)+\left(\frac{1}{15}+...+\frac{1}{15}\right)\)

\(\Rightarrow A< \frac{1}{5}\cdot5+\frac{1}{10}\cdot5+\frac{1}{15}\cdot5\)

\(\Rightarrow A< 1+\frac{1}{2}+\frac{1}{3}\)

\(\Rightarrow A< \frac{11}{6}< 2\) 

\(\Rightarrow A< 2\left(đpcm\right)\)