Chứng minh rằng :
3/(12.22)+5/(22.32)+7/(32.42)+...+19/(92.102) <1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=10/2.12+10/12.22+10/22.32+10/32.42+.......+10/2002.2012
S=1/2-1/12+1/12-1/22+1/22-1/32+1/32-1/42+.....+1/2002-1/2012
S=1/2-1/2012
S=????
bạn tự tính nhé
S=10.1/10{1/2-1/12+1/12-1/22+1/22-1/32+...+1/2002-1/2012}
=1/2-1/2012
=1005/2012
\(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+...+\dfrac{19}{9^{10}.10^2}\)
\(=\dfrac{1}{1^2}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+...+\dfrac{1}{9^{10}}-\dfrac{1}{10^2}\)
\(=1-\dfrac{1}{10^2}< 1\)
\(\Rightarrowđpcm\)
bạn ơi đề sai ở chỗ dấu " , " phải không?? bạn hãy sửa đề đi
Bạn Nguyễn Thị Bích Phương ơi, mình sửa lại đề rồi đó. Bạn giải giúp mình với.
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+.....+\frac{19}{9^2.10^2}\)
\(=\frac{3}{1.4}+\frac{5}{4.9}+.....+\frac{19}{81.100}\)
\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+....+\frac{1}{81}-\frac{1}{100}\)
\(=1-\frac{1}{100}< 1\)
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)
\(=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+...+\frac{10^2-9^2}{9^2.10^2}\)
\(=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{9^2}-\frac{1}{10^2}\)
\(=1-\frac{1}{10^2}< 1\)
Đặt A = \(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+....+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}\)
\(A=\left(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{9}\right)+\left(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{14}\right)+\left(\frac{1}{15}+\frac{1}{16}+...+\frac{1}{19}\right)\)
\(\Rightarrow A< \left(\frac{1}{5}+...+\frac{1}{5}\right)+\left(\frac{1}{10}+...+\frac{1}{10}\right)+\left(\frac{1}{15}+...+\frac{1}{15}\right)\)
\(\Rightarrow A< \frac{1}{5}\cdot5+\frac{1}{10}\cdot5+\frac{1}{15}\cdot5\)
\(\Rightarrow A< 1+\frac{1}{2}+\frac{1}{3}\)
\(\Rightarrow A< \frac{11}{6}< 2\)
\(\Rightarrow A< 2\left(đpcm\right)\)
hoc moi lop 5