cho tam giác ABC cân tại A(A<90 độ); các đường cao BD; CE (D thuộc AC; E thuộc AB) cắt nhau tại H
a) chứng minh tam giác ABD = tam giác ACE
b) chứng minh AH là trung điểm của BC
c)Trên tia đối EH lấy điểm N sao cho NH<HC. Trên tia đối tiaDH lấy điểm M sao cho MH =NH. Chứng minh các dường thẳng BN; AH; CM đồng quy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự vẽ
C/m: a, Xét \(\Delta ABM\)và \(\Delta ACM\) có:
AB = AC (do tam giác ABC cân tại A)
BM = CM ( do M là trung điểm của BC)
AM chung
=> \(\Delta ABM=\Delta ACM\)(c.c.c)
b, Xét tam giác BHM vuông tại H và CKM vuông tại K có:
BM = MC (do M là trung điểm của BC)
\(\widehat{ABC}=\widehat{ACB}\)(do tam giác ABC cân tại A)
=> \(\Delta BHM=\Delta CKM\)(cạnh huyền - góc nhọn)
=> BH = CK (2 cạnh tương ứng)
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: ΔAHB=ΔAHC
=>HB=HC
=>BC=2HB
ΔAHB vuông tại H nên AB^2=AH^2+HB^2
=>HB^2=5^2-4^2=9
=>HB=3(cm)
=>BC=2*3=6cm
c: Xét ΔBAK có
BH vừa là đường cao, vừa là trung tuyến
=>ΔBAK cân tại B
a) Xét \(\Delta BNA\) và \(\Delta MNE\) , Ta có:
\(MN=NB\)(Do \(N\) là trung điểm của \(MB\))
\(\widehat{BNA}=\widehat{MNE}\)
\(AN=NE\)( gt)
=> \(\Delta BNA=\Delta MNE\left(c.g.c\right)\)
b)
\(*\)) Do \(BC=2AB\) nên \(\frac{1}{2}\)\(BC=AB\) => \(MB=BA\)
\(=>\) \(\Delta BMA\) là tam giác cân tại \(B\)
c)
\(*\)) Kéo dài đường thẳng \(AM\) cắt \(EC\) tại \(Q\) và nối \(EB.\)
Do \(\Delta NBA=\Delta NME\) => \(ME=BA\)
Mà \(MB=BA\)=> \(EM=MB\) đồng thời \(EM=MC\)(Do \(MC=MB\))
=>\(\Delta MEB\) cân tại M => \(\widehat{MEB}=\widehat{MBE}\) (1)
và \(\Delta EMC\) cân tại M => \(\widehat{MEC}=\widehat{MCE}\) (2)
Từ 1 và 2 => \(\widehat{BEM}+\widehat{MEC}=\widehat{BEC}=\widehat{ECM}+\widehat{EBM}\)
Mà \(\widehat{BEC}+\widehat{ECM}+\widehat{ECB}=180^o\)
=> \(\widehat{BEC}=90^o\) => \(EB\) \(\bot~ EC\)
Xét \(\Delta ENB\) và \(\Delta ANM\), ta có:
\(MN=NB\)
\(\widehat{ENB}=\widehat{ANM}\)
\(EN=NA\)
=> \(\Delta ENB\) và \(\Delta ANM\left(c.g.c\right)\) => \(\widehat{AMB}=\widehat{MBE}\) và 2 góc này nằm ở vị trí so le trong nên \(EB\)//\(MA\) (4)
Từ 3 và 4. Ta có: AQ \(\bot ~ EC\)
Xét \(\Delta MEQ\) và \(MCQ\). Có:
\(\widehat{EQM}=\widehat{CQM}\left(=90^o\right)\)
\(ME=MC\)
\(\widehat{MEQ}=\widehat{MCQ}\)
=> \(\Delta MEQ=MCQ\left(ch-gn\right)\)
=> \(QE=QC\)=> \(AQ\) là đường trung tuyến ứng với cạnh EC (5)
và \(CN\) là đường trung tuyến ứng với cạnh\(EA\)A (6)
Từ 5 và 6 =>\(M\) là điểm giao nhau của 2 đường trung tuyến của tam giác => \(M\) là trọng tâm của \(\Delta CEA\)
d)
\(*\)) Lấy điểm \(K\) trên cạnh \(MA\) sao cho \(MK=KA\) và điểm giao nhau của \(NA\) và \(KB\) là \(T\) (Ta có thể thấy \(T\) là trọng tâm của \(\Delta MBA\) do T là giao điểm của 2 đường trung tuyến => \(TA=\)\(\frac{2}{3}\)AN)
Ta có: \(\Delta MKB=\Delta AKB\left(c.c.c\right)\)=> \(\widehat{MKB}=\widehat{AKB}\left(=90^o\right)\) => \(BK//EQ\)=>\(\widehat{EBK}=90^o\)
=> \(\widehat{BTA}>90^o\) => \(AB>TA\) => \(AB>\)\(\frac{2}{3}\)\(AN\)
c, vì tam giác HMB=tam giác KMC(CH-GN) => \(\widehat{HMB}\)=\(\widehat{KMC}\)
mà \(\widehat{IBM}\)=\(\widehat{KMC}\)(vì ở vị trí đồng vị)
=> \(\widehat{IMB}\)=\(\widehat{IBM}\)(Vì cùng bằng góc \(\widehat{KMC}\))
=> tam giác IBM cân tại I
Đề có 2 chỗ sai:
Thứ nhất: phân giác trong của góc ABC không thể cắt AB tại D, phải là cắt BC tại D.
Thứ hai: tam giác ABC cân tại A nên:
* AB = AC
* đường phân giác AD cũng chính là đường cao => AD vuông góc BC
tam giác ADC vuông tại D nên: AD2 + DC2 = AC2
mà AB = AC => AD2 + DC2 = AB2
a) \(\widehat{BDM}=180^0-\widehat{BMD}-\widehat{DBM}=180^0-\widehat{BMD}-\widehat{DME}=\widehat{CME}\)
\(\Rightarrow\)△BMD∼△CEM (g-g)
b) \(\Rightarrow\dfrac{BD}{CM}=\dfrac{MD}{EM}\Rightarrow\dfrac{BD}{BM}=\dfrac{MD}{EM}\)
\(\Rightarrow\)△BMD∼△MED (c-g-c).
\(\Rightarrow\widehat{BDM}=\widehat{MDE}\Rightarrow\)DM là tia p/g góc BDE.
a)Ta có:\(\Delta\)NMP cân tại N
=> ^NMP = ^NPM = 1800 − ^NMP = 1800 − ^NPM
=> ^NMA = ^NPB
Xét \(\Delta\)NMA và \(\Delta\) NPB có:
\(\hept{\begin{cases}NM=NP\left(gt\right)\\\widehat{NMA}=\widehat{NPB}\left(cmt\right)\\MA=PB\left(gt\right)\end{cases}\Rightarrow\Delta NMA=\Delta NPB\left(c.g.c\right)}\)
=> NA = NB (2 cạnh tương ứng)
=> \(\Delta\)NAB cân tại N
b)Từ \(\Delta\)NMA = \(\Delta\)NPB (cmt )
=> ^NAM = ^NBP (2 góc tương ứng) hay ^HAM = ^KBP
Xét \(\Delta\)HAM vuông tại H và \(\Delta\)KBP vuông tại K có:
\(\hept{\begin{cases}AM=BP\left(gt\right)\\\widehat{HAM}=\widehat{KBP}\left(cmt\right)\\\Delta HAM=\Delta KBP\left(ch-gn\right)\end{cases}}\)
=> HM = KP (2 cạnh tương ứng)
Tham khảo bài này nha bạn:
Cho tam giác ABC vuông cân tại A. M là trung điểm của BC.điểm E nằm giữa M và C. kẻ BH, CK vuông góc?
với AE (H,K thuộc AE ).
a. cm: BH=AK
b, tam giác MBH= tam giác MAK
c, tam giác MHK vuông cân.
a) Ta có ^ABH + ^BAH = 90° Măt khác ^CAH + ^BAH = 90°
=> ^ABH = ^CAH
Xét ▲ABH và ▲CAK có:
^H = ^C (= 90°)
AB = AC (T.g ABC vuông cân)
^ABH = ^CAH (cmt)
=> △ABH = △CAK (c.h-g.n)
=> BH = AK
b) Ta có BH//CK (Cùng ┴ AK)
=>^HBM = ^MCK (SLT)(1)
Mặt khác ^MAE + ^AEM = 90°(2)
Và ^MCK + ^CEK = 90°(3)
Nhưng ^AEM = ^CEK (đ đ)(4)
Từ 2,3,4 => ^MAE = ^ECK (5)
Từ 1,5 => ^HBM = ^MAE
Ta lại có AM là trung tuyến của tam giác vuông ABC nên AM = BM =MC = 1/2 BC
Xét ▲MBH và ▲MAK có:
MB = AM (cmt); ^HBM = ^MAK(cmt); BH = AK (cma)
=> △MBH = △MAK (c.g.c)
c) Theo câu a, b ta có: AH = CK; MH = MK; AM = MC nên : ▲AMH = ▲ CMK (c.c.c)
=> ^AMH = ^CMK; mà ^AMH + ^HMC = 90 độ
=> ^CMK + ^HMC = 90° hay ^HMK = 90°
Tam giác HMK có MK = MH và ^HMK = 90° nên vuông cân
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔADB=ΔAEC
b: Sửa đề; AH là đường trung trực của BC
Xét ΔABC có
BD,CE là các đường cao
BD cắt CE tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC
ΔABC cân tại A
mà AH là đường cao
nên AH là đường trung trực của BC
c: Gọi K là giao điểm của BN và CM
Ta có: AH là đường trung trực của BC
=>HB=HC
Xét ΔHBN và ΔHCM có
HB=HC
\(\widehat{BHN}=\widehat{CHM}\)(hai góc đối đỉnh)
HN=HM
Do đó: ΔHBN=ΔHCM
=>BN=CM và \(\widehat{HNB}=\widehat{HMC}\)
Ta có: \(\widehat{HNB}+\widehat{HNM}=\widehat{BNM}\)
\(\widehat{HMC}+\widehat{HMN}=\widehat{NMC}\)
mà \(\widehat{HNB}=\widehat{HMC};\widehat{HNM}=\widehat{HMN}\)
nên \(\widehat{BNM}=\widehat{CMN}\)
=>\(\widehat{KNM}=\widehat{KMN}\)
=>KM=KN
Ta có: KB+BN=KN
KC+CM=KM
mà KN=KM và BN=CM
nên KB=KC
=>K nằm trên đường trung trực của BC(1)
ta có: AB=AC
=>A nằm trên đường trung trực của BC(2)
ta có:HB=HC
=>H nằm trên đường trung trực của BC(3)
Từ (1),(2),(3) suy ra A,H,K thẳng hàng