K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2017

Góc AMN = 80 độ 

21 tháng 10 2017

Xét tam giác ABC: 

   

\(\widehat{ABC}\) + \(\widehat{BAC}\)\(\widehat{BCA}\)= 180 độ ( định lý tổng 3 góc trong tg ) 

thay số đo góc vào => \(\widehat{BCA}\)= 80 độ 

CÓ MN // BC => \(\widehat{AMN}\) = \(\widehat{ACB}\) = 80 độ

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Theo đề bài ta có tam giác ABC cân ở A và \(\widehat A = {56^o}\)

Mà \( \Rightarrow \widehat A + \widehat B + \widehat C = {180^o}\)

\( \Rightarrow \widehat B = \widehat C = ({180^o} - {56^o}):2 = {62^o}\)

b) Vì tam giác ABC cân tại A nên AB = AC ( định nghĩa tam giác cân )

Mà M, N là trung điểm của AB, AC

Nên AM = AN

Xét tam giác AMN có AM = AN nên AMN là tam giác cân tại A

\( \Rightarrow \widehat M = \widehat N = ({180^o} - {56^o}):2 = {62^o}\)

c) Vì \(\widehat {AMN}=\widehat {ABC}\) (cùng bằng 62°)

Mà chúng ở vị trí đồng vị nên MN⫽BC

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

a) Vì \(MN//BC\left( {M \in AB,N \in AC} \right)\) nên \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}}\)(định lí Thales).

b) Vì \(AM = DE\) mà \(\frac{{DE}}{{AB}} = \frac{1}{3} \Rightarrow \frac{{AM}}{{AB}} = \frac{1}{3} \Rightarrow \frac{{AN}}{{AC}} = \frac{1}{3} \Rightarrow AN = \frac{1}{3}AC\).

Lại có \(DF = \frac{1}{3}AC\) nên \(AN = DF = \frac{1}{3}AC\).

c) Vì \(MN//BC \Rightarrow \Delta ABC\backsim\Delta AMN\) (định lí)(1)

d) Dự đoán  hai tam giác \(DEF\) và \(ABC\) đồng dạng.

6 tháng 5 2020

????????????

5 tháng 4 2021


DE ngắn nhất ⇔ AM ngắn nhất. Điều đó xảy ra khi AM là đường cao ΔABC.
                           

27 tháng 9 2021

a) Vì \widehat{AEM}=\widehat{AFM}={90}^\circ nên A, E, M, F thuộc đường tròn tâm I đường kính AM \Rightarrow\ \widehat{EIF}=2\widehat{EAF}={120}^\circ (góc ở tâm bằng hai lần góc nội tiếp chắn cung \stackrel\frown{EF}).

b) Hạ IH\bot EF, ta có IE=IF=\frac{1}{2}AM nên \Delta IEF cân \Rightarrow HE=HF.

Ta lại có: EH=EI.\sin{\widehat{EIH}}=\frac{1}{2}AM.\sin{{60}^\circ} (vì \widehat{EIH}=\widehat{FIH}=\frac{1}{2}\widehat{EIF}={60}^\circ).

Suy ra EH=\frac{a}{2}.\frac{\sqrt3}{2}=\frac{a\sqrt3}{4}\Rightarrow EF=2EH=\frac{a\sqrt3}{2}.

c) EF nhỏ nhất khi AM nhỏ nhất \Leftrightarrow AM \bot BC.

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

Vì \(MN//BC\) nên \(\widehat {AMN} = \widehat {ABC};\widehat {ANM} = \widehat {ACB}\) (các cặp góc đồng vị)

Xét tam giác \(ABC\) có, \(MN//BC\) nên theo hệ quả của định lí Thales ta có:

\(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{{MN}}{{BC}}\).

Vậy trong các ô trống cần điền là:

\(\widehat A\) chung;

\(\widehat M = \widehat B\);

\(\widehat N = \widehat C\);

\(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{{MN}}{{BC}}\).

Tam giác \(\Delta AMN\) và\(\Delta ABC\) có các góc tương ứng bằng nhau và tỉ số các cạnh tương ứng bằng nhau nên \(\Delta AMN\) đồng dạng \(\Delta ABC\).

18 tháng 9 2023

Xét hai tam giác ABC và DEF có:

\(\begin{array}{l}AB = DE\\AC = DF\\\widehat {BAC} = \widehat {EDF} (= {60^\circ })\end{array}\)

\(\Rightarrow \Delta ABC = \Delta DEF\)(c.g.c)

Do đó:

\(BC=EF = 6cm\) ( 2 cạnh tương ứng)

\( \widehat {ABC} =\widehat {DEF}= {45^o}\) (2 góc tương ứng)

\(\begin{array}{l}\widehat {BAC} + \widehat {ABC} + \widehat {ACB} = {180^o}\\ \Rightarrow {60^o} + {45^o} + \widehat {ACB} = {180^o}\\ \Rightarrow \widehat {ACB} = {75^o}\end{array}\)

\( \Rightarrow \widehat {EFD} = \widehat {ACB} = {75^o}\)