Chứng tỏ rằng : \(3^1+3^2+3^3+3^4+.....+3^{99}+3^{100}⋮4\) chia hết cho 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = 31 + 32 + 33 + 34 + ... + 3100
= ( 31 + 32 ) + ( 33 + 34 ) + ... + ( 399 + 3100 )
=3( 1+3 ) + 33 ( 1 + 3 ) + ... + 399 ( 1 + 3 )
= 4( 3+ 33 + ... + 399 ) chia hết cho 4
=> đpcm
\(3^1+3^2+3^3+3^4+...+3^{99}+3^{100}\)
\(=\left(3^1+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\)
\(=3^1.\left(1+3\right)+3^3\left(1+3\right)+...+3^{99}\left(1+3\right)\)
\(=3^1.4+3^3.4+3^5.4+...+3^{99}.4\)
\(=4.\left(3^1+3^3+3^5+...+3^{99}\right)\)
Vậy phép tính trên chia hết cho 4
= \(3\left(1+3+3^2+3^3\right)+...+3^{97}\left(1+3+3^2+3^3\right)\)
=\(40\left(1+...+3^{97}\right)\) chia hết cho 40
a) S = 2 + 22 + 23 + 24 +.....+ 29 + 210
= (2 + 22) + (23 + 24) +.....+ (29 + 210)
= 2(1 + 2) + 23(1 + 2) +....+ 29(1 + 2)
= 3.(2 + 23 +.... + 29) chia hết cho 3
=> S = 2 + 22 + 23 + 24 +.....+ 29 + 210 chia hết cho 3 (Đpcm)
b) 1+32+33+34+...+399
=(1+3+32+33)+....+(396+397+398+399)
=40+.........+396.40
=40.(1+....+396) chia hết cho 40 (đpcm)
Giải:
\(3^1+3^2+3^3+3^4+...+3^{99}+3^{100}\)
\(=\left(3^1+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{99}\left(1+3\right)\)
\(=3.4+3^3.4+...+3^{99}.4\)
\(=4\left(3+3^3+...+3^{99}\right)⋮4\)
Vậy ...
Chúc bạn học tốt!
=3+3^2+3^3+....+3^99+3^100
=(3+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^99+3^100)
=(1+3).3+(1+3).3^3.(1+3).3^5...(1+3).2^99
=4.3+4.3^3+4.3^5...4.2^99
Vậy,3+3^2+3^3+...+3^99+3^100 chia hết cho 4
=3+3^2+3^3+....+3^99+3^100
=(3+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^99+3^100)
=(1+3).3+(1+3).3^3. (1+3).3^5...(1+3).2^99
=4 . 3 + 4 . 3^3 + 4 . 3^5...4.2^99
Vậy:3 + 3^2 + 3^3 +...+ 3^99 +3^100 chia hết cho 4
đặt A = 3 + 32 + 33 + 34 + ... + 399 + 3100
A = ( 3 + 32 ) + ( 33 + 34 ) + ... + ( 399 + 3100 )
A = 3 ( 1 + 3 ) + 33 ( 1 + 3 ) + ... + 399 ( 1 + 3 )
A = 3 . 4 + 33 . 4 + ... + 399 . 4
A = 4 . ( 3 + 33 + ... + 399 ) \(⋮\)4