Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh
Giả sử ∠(A1) ≠ ∠(B1)
Qua B kẻ đường thẳng xy sao cho ∠(ABy) = ∠(A1)
Mà hai góc này ở vị trí so le trong nên theo dấu hiệu của hai đường thẳng song song, ta có xy //a
+) Qua điểm B ta kẻ được hai đường thẳng b và xy cùng song song với đường thẳng a. Theo tiên đề Ơ- clit suy ra đường thẳng xy trùng với đường thẳng b.
TL :
a) Vẽ thêm các tia đối của các tia Dm, Cp, Bq và An.
Vẽ thêm các đường phân giác Ds và Ar của góc ∠D và ∠A.
Khi đó chứng minh được Cp song song với Ds.
Tương tự chứng minh được Ar song song với Dm.
Từ đó suy ra được: An // Cp và Dm // Bq.
b) Sử dụng tính chất tia phân giác của hai góc bù nhau có được Ds, Dm vuông góc với nhau.
Từ đó suy ra được: An vuông góc với Bq.
Hok tốt
a: Xét tứ giác ABCD có
AB//CD
AD//BC
Do đó: ABCD là hình bình hành
b: Vì ABCD là hình bình hành
nên AC và BD cắt nhau tại trung điểm của mỗi đường
mà O là trung điểm của AC
nên O là trung điểm của BD
hay B và D đối xứng nhau qua O
1:
Cách vẽ: Vẽ một đường thẳng vuông góc với một đọan thẳng cho trước tại trung điểm của đoạn thẳng đó
Bài 6 :
Tự vẽ hình nhá :)
a) Gọi O là giao điểm của AC và EF
Xét tam giác ADC có :
EO // DC => AE/AD = AO/AC (1)
Xét tam giác ABC có :
OF // DC
=> CF/CB = CO/CA (2)
Từ (1) và (2) => AE/AD + CF/CB = AO/AC + CO/CA = AO + CO/AC = AC/AC = 1 => đpcm
Bài 7 :
A B C D G K M F E
a) Do EF // AB => CF / CA = EF / AB => CF / EF = AC / AB (1)
Dựng MG // AC và M là trung điểm của cạnh BC => GM là đường trung bình của tam giác ABC => G là trung điểm của cạnh AB =>AG = BG
Do DK // GM => AD / AG = DK / GM => AD / BG = DK / GM
=> DK / AD = GM / BG = \(\frac{\frac{AC}{2}}{\frac{AB}{2}}=\frac{AC}{AB} \left(2\right)\)
Từ (1) và (2) => CF / EF = DK / AD
Mà tứ giác ADEF là hình bình hành ( vì EF // AD và DE // AF ) nên AD = È
=> CF = DK ( đpcm )
Bài 8 :
A B C M N 38 11 8
Ta có : AB = AM + MB = 11 + 8 = 19 ( cm )
Áp dụng hệ quả định lí Ta-lét vào tam giác ABC, ta có :
AM / AB = AN / AC => AM + AB / AB = AN + AC / AC => 19 + 11 / 19 = AN + 38 / 38 => 30/19 = 38 + AN / 38
=> 1140 = 19.AN + 722
=> AN = ( 1140 - 722 ) / 19 = 22 ( cm )
=> NC = 38 - 12 = 26 ( cm )
a) Ta có:
\(\widehat{MAB}=\widehat{ABC}\left(=55^o\right)\)
Mà hai góc này ở vị trí so le trong
=> AM//BC
b) Ta có:
\(\widehat{NAC}=\widehat{ACB}\left(=40^o\right)\)
Mà hai góc này ở vị trí so le trong
=> AN//BC
c) Xét tam giác ABC có:
\(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^o\\ =>\widehat{BAC}=180^o-\widehat{ABC}-\widehat{ACB}\\ =>\widehat{BAC}=180^o-55^o-40^o=85^o\)
\(\widehat{MAB}+\widehat{BAC}+\widehat{NAC}=55^o+85^o+40^o=180^o\)
=> \(\widehat{MAN}\) là góc bẹt => M, A, N thẳng hàng