K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2017

Ta có : \(10^{2017}+8=10......10+8=10...8.\)

\(\Rightarrow1+0+...+8=9⋮9\)

\(\Rightarrow10^{2017}+8⋮9\)

19 tháng 10 2017

10^2017+8 = 1+ 0+0+0+..+0( 2017 số 0)

=1+8=9 chia hết cho 9

14 tháng 1 2018

B = 8888...8 + 2017 - 9

= 8(11...1) + 2017 - 9 (2017 chữ số 1)

Ta có : 111...1 có tổng các chữ số : 1 + 1 + ... + 1 = 2017

nên 8(111...1) chia hết cho 9 (vì 2017 chia hết cho 9)

\(2017⋮9\)

\(-9⋮9\)

\(\Rightarrow\) \(B⋮9\)

16 tháng 10 2017

Ta có : +) 104 = 1000 chia hết cho 8 => 104.102013 chia hết cho 8 => 102017 chia hết cho 8 

          +)  8 chia hết cho 8 

=> 10^2017 + 8 chia hết cho 8         (1)

Ta lại có : 10^2017 = 100...0 (có 2017 số 0 ) =>  10000...0 + 8 = 1000...08 chia hết cho 9  => 10^2017 + 8 chia hết cho 9       (2)

Từ (1) (2) => 10^2017 + 8 chia hết cho 72

18 tháng 1 2022

= báo cáo

b: \(8^{10}-8^9-8^8=8^8\left(8^2-8-1\right)=8^8\cdot55⋮55\)

c: 5^5-5^4+5^3

=5^3(5^2-5+1)

=5^3*21 chia hết cho 7

e:

72^63=(3^2*2^3)^63=3^126*2^189

 \(24^{54}\cdot54^{24}\cdot10^2=2^{162}\cdot3^{54}\cdot3^{72}\cdot2^{24}\cdot2^2\cdot5^2\)

\(=2^{188}\cdot3^{136}\cdot5^2\) chia hết cho 3^126*2^189

=>ĐPCM

g: \(=\left(3^4\right)^7-\left(3^3\right)^9-3^{26}\)

\(=3^{26}\left(3^2-3-1\right)=5\cdot3^{26}=5\cdot9\cdot3^{24}⋮5\cdot9=45\)

 

5 tháng 10 2017

a) - Xét trường hợp chia hết cho 2

 + Vì n và n + 1 là hai số liên tiếp nên n.(n+1).(2n+1) chia hết cho 2.

- Xét trường hợp chia hết cho 3.

+ Nếu n chia hết cho 3 thì n.(n+1).(2n+1) chia hết cho 3

+ Nếu n chia 3 dư 1 thì 2n + 1 chia hết cho 3 => n.(n+1).(2n+1) chia hết cho 3.

+ Nếu n chia 3 dư 2 thì n + 1 chia hết cho 3 => n.(n+1).(2n+1) chia hết cho 3.

Vậy n.(n+1).(2n+1) chia hết cho 2.

Mà n.(n+1).(2n+1) chia hết cho 3 và 2 => n.(n+1).(2n+1) chia hết cho 6 (đpcm)

b) 10^9 + 2 = 100.....02.

Tổng các chữ số của số trên là: 1 + 0 + 0 + 0 +... + 0 + 2 = 3 => 10^9+2 chia hết cho 3(đpcm)

c) 10^10 - 1 = 99...99

Vì các chữ số của số trên đều là 9 => Nó chia hết cho 9 => 10^10 - 1 chia hết cho 9 (đpcm)

d) 10^8 - 1 = 99...9

Vì các chữ số của số trên đều là 9 => Nó chia hết cho 9 => 10^10 - 1 chia hết cho 9 (đpcm)

E) 10^8 + 8 = 10...08 

Tổng các chữ số của số trên là: 1 + 0 + 0 +... + 0 + 8 = 9 => Nó chia hết cho 9 => 10^8 + 8 chia hết cho 9 (đpcm)

22 tháng 10 2016

a) Ta có: \(10^{2017}-1=100...0\)(2017 chữ số 0) - 1 = 99...9 (2017 chữ số 9)

Do \(99...99⋮9\Rightarrow10^{2017}-1⋮9\). Mà số chia hết cho 9 thì chia hết cho 3.

b) Ta có: \(10^{2020}+8=100...0\)(2020 chữ số 0) +8

Ta thấy tổng của số trên là \(1+0+0+...+0+8=9⋮9\Rightarrow10^{2020}+8⋮9\) mà số chia hết cho 9 thì chia hết cho 3.

c) Ta có: \(10^{2016}+8=10...0\)(2016 chữ số 0) + 8= \(10...008\)

Tổng của số trên là 9 nên số trên chia hết cho 9.

Ta lại có 3 chữ số tận cùng của sô trên chia hết cho 8 => số trên chia hết cho 8

=> Số trên chia hết cho 8.9=72

 

 

Bài 5: 

b: Ta có: \(n+6⋮n+2\)

\(\Leftrightarrow n+2\in\left\{2;4\right\}\)

hay \(n\in\left\{0;2\right\}\)

c: Ta có: \(3n+1⋮n-2\)

\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)

hay \(n\in\left\{1;3;9\right\}\)