K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1
10 tháng 7 2024

a, Ta có DE vuông AB 

AH vuông AB 

=> DE // AH 

b, Ta có DE // AH => ^BDE = ^ACB ( 2 góc đồng vị ) 

=> ^BDE = ^DCH = 400

c, Ta có DH vuông AC 

AB vuông AC 

=> DH // AB 

Ta có DH // AB; ED//AH ; ^EAH = ^AED = ^AHD = 900

Vậy tứ giác AEDH là hình vuông 

=> DE vuông DH 

19 tháng 5 2016

B A C M 5cm

19 tháng 5 2016

áp dụng định lí pitago vào tam giác vuông ABC ta tính đc BC= tự tính nha

Vì MN Song song với AB nên tam giác ABC đồng dạng với tg  BNC ta suy ra đc tỉ số BC/AC=NC/BC

=> NC= BC. AC/ BC= tự thay vào rồi tính nha

Rồi lại áp dụng đl pitago vào tam giác vuông BNC ta tính đc cạnh MN. Ok?

2 tháng 1 2016

tui lớp 8 nè mà quên rồi

2 tháng 1 2016

Em bít ....nhưng mà đợi em lên lớp 7 rùi em giải cho , em mới lớp 6 thui.

9 tháng 10 2019

TL : 

a) Vẽ thêm các tia đối của các tia Dm, Cp, Bq và An.

Vẽ thêm các đường phân giác Ds và Ar của góc ∠D và ∠A.

Khi đó chứng minh được Cp song song với Ds.

Tương tự chứng minh được Ar song song với Dm.

Từ đó suy ra được: An // Cp và Dm // Bq.

b) Sử dụng tính chất tia phân giác của hai góc bù nhau có được Ds, Dm vuông góc với nhau.

Từ đó suy ra được: An vuông góc với Bq.

Hok tốt

9 tháng 10 2019

Giỏi thế

Bài 2:

a: Xét tứ giác AMCK có

I là trung điểm của AC

I là trug điểm của MK

Do đó: AMCK là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCK là hình chữ nhật

b: Để AMCK là hình vuông thì AM=CM

=>AM=BC/2

=>ΔABC vuông tại A

11 tháng 6 2017

MÌNH KO THẤY ĐƯỜNG KO THẤY BÀI GÌ HẾT

 Ta có: 
{ DE song song với AM (gt) => DE/ AM = BD / BM (Định lí Thalès) 
{ DF song song với AM (gt) => DF / AM = CD / CM (Định lí Thalès) 
=> DE / AM + DF / AM = BD / BM + CD / CM 
<=> (DE + DF) / AM = BD / (BC/2) + CD / (BC/2) = (BD + CD) / (BC/2) 
(Vì AM là trung tuyến trong tam giác ABC => M là trung điểm của BC => BM = CM = BC/2) 
<=> (DE + DF) / AM = BC / (BC/2) = 2BC / BC = 2 
<=> DE + DF = 2AM (điều phải chứng minh) 

b) 
- Xét tứ giác ANDM có: AN // DM (gt) và DN // AM (gt) 
=> Tứ giác ANDM là hình bình hành => AN = DM 

- Ta có: AN // BD (gt) 
=> AN / BD = NE / DE (Định lí Thalès) 
<=> NE = (DE . AN) / BD 
- Ta có: DE + DF = 2AM (cm câu a) 
<=> DE + (DE + NE + NF) = 2AM 
<=> 2DE + EF = 2AM 
<=> EF = 2AM - 2DE = 2(AM - DE) 
<=> EF = 2. {[(DE . BM) / BD] - DE} = 2. [(DE . BM - DE . BD) / BD] 
(do DE/ AM = BD / BM => AM = (DE . BM) / BD ) 
<=> EF = 2. [DE . (BM - BD) / BD] 
<=> EF = 2. (DE . DM) / BD = 2 . (DE . AN) / BD (vì AN = DM) 
<=> EF = 2NE 
<=> NE = EF / 2 
=> N là trung điểm của EF 
Vậy NE = NF (điều phải chứng minh)