K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2017

mk cần gấp lắm rồi

19 tháng 10 2017

\(A=1+2+2^2+...+2^{99}\)

\(2A=2+2^2+2^3+2^{100}\)

\(2A-A=\left(2+2^2+...+2^{100}\right)-\left(1+2+...+2^{99}\right)\)

\(A=2^{100}-1< 2^{100}\)

19 tháng 10 2017

A=2^100-1

suy ra A<2^100

14 tháng 8 2019

mik tính A trước nhé

\(A=1-2+2^2-...-2^{2007}+2^{2008}\)

\(2.A=2-2^2+2^3-...-2^{2008}+2^{2009}\)

\(2.A-A=\left(2-2^2+2^3-..-2^{2008}+2^{2009}\right)\)\(-\left(1-2+2^2-...-2^{2007}+2^{2008}\right)\)

\(A=1-2^{2009}\)

10 tháng 7 2016

a, 2A= 2+2^2+2^3+2^4+2^5+...+2^2017

=> 2A-A= 2^2017-1

=> A= 2^2017-1/2

30 tháng 12 2018

bài 1 

a)Số tận cùng là 6 nha

21 tháng 6 2016

b)2A=2(2+2^2+2^3+....+2^100)

2A=22+23+...+2101

2A-A=(22+23+...+2101)-(2+2^2+2^3+....+2^100)

A=2101-2

Vì 2101-2<2101 =>A<2101

24 tháng 8 2018

1.

Đặt \(1995^{1995}=a=a_1+a_2+a_3+...+a_n\)

Gọi \(S=a_1^3+a_2^3+...+a_n^3=a_1^3+a_2^3+...+a_n^3-a+a\)

\(S=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+...+\left(a_n^3-a_n\right)+a\)

Vì mỗi dấu ngoặc đều chia hết cho 6 do là tích 3 số tự nhiên liên tiếp

\(\Rightarrow S\) chia 6 dư a

\(1995\equiv3\left(mod6\right)\Rightarrow1995^{1995}\equiv3\left(mod6\right)\)

Vậy S chia 6 dư 3

2.

\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}=\left(B\left(25\right)-1\right)^{10}=B\left(25\right)+1\)

Vì 2100 chẵn nên 3 chữ số tận cùng của nó chẵn nên có thể là 126; 376; 626; 876

Lại có 2100 chia hết cho 8 => ba chữ số tận cùng chi hết cho 8

=> Ba CTSC là 376

3.

\(22^{22}+55^{55}=\left(BS7+1\right)^{22}+\left(BS7-1\right)^{55}=BS7+1+BS7-1=BS7⋮7\)

\(3^{1993}=3\cdot\left(3^3\right)^{664}=3\cdot\left(BS7-1\right)^{664}=3\left(BS7+1\right)=BS7+3\) nên chia 7 dư 3

\(1992^{1993}+1994^{1995}=\left(BS7-3\right)^{1993}+\left(BS7-1\right)^{1995}=BS7-3^{1993}+BS7-1=BS7-\left(BS7+3\right)+BS7-1=BS7-4\) chia 7 dư 3

\(3^{2^{1930}}=3^{2860}=3\cdot\left(3^3\right)^{953}=3\cdot\left(BS7-1\right)^{953}=3\left(BS7-1\right)=BS7-3\) chia 7 dư 4

4.

\(2^{1994}=2^2\cdot\left(2^3\right)^{664}=4\left(BS7+1\right)^{664}=4\left(BS7+1\right)=BS7+4\) chia 7 dư 4

\(3^{1998}+5^{1998}=\left(3^3\right)^{666}+\left(5^2\right)^{999}=\left(BS7-1\right)^{666}+\left(BS7-1\right)^{999}=BS7+1+BS7-1=BS7⋮7\)

\(A=1^3+2^3+3^3+...+99^3=\left(1+2+...+99\right)^2=B^2⋮B\)

CM bằng quy nạp (có trên mạng)

2 tháng 10 2020

bạn ơi cho mình hỏi là vì sao 1995 chia 6 dư 3 thì 1995^1995 chia 6 cũng dư 3 vậy ạ? nếu đc thì bạn có thể chứng minh giúp mình t/c này với ạ

3 tháng 10 2018

a, \(A=1+2+2^2+...+2^n\)

\(\Rightarrow2A=2+2^2+2^3+...+2^{n+1}\)

\(2A-A=\left(2+2^2+2^3+...+2^{n+1}\right)-\left(1+2+2^2+...+2^n\right)\)

\(\Rightarrow A=2^{n+1}-1\)

Mấy phần kiia cần có thêm dữ kiện

16 tháng 11 2019

tui cần

 gấp nhé

16 tháng 11 2019

a,3A=3+3^2+3^3+...+3^2020

=>3A-A=(3+3^2+3^2+3^3+...+3^2021)-(1+3+3^2+3^3+...+3^2020)

=>2A=3^2021-1=>A=\(\frac{3^{2021}-1}{2}\)

19 tháng 10 2018

A.3 =3+ 33 +34 + .... + 3100  

A.3 - A =3+ 3+ 34 +.....+3100 - 3 - 31- 32 -....-399

A.2 = 3100 - 3

ta có 3100 = 34*25 suy ra 3100 tận cùng =1 suy ra 3100 -3 tận cùng bằng 8 

Vậy A tận cùng bằng 4