giúp mk vs
xác định a để đa thức 6x3-2x2-ax-2 chia hết cho đa thức 2x-3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đa thức \(K\left(x\right)=6x^3-2x^2-ax-2\)chia hết cho nhị thức 2x - 3 khi \(\frac{3}{2}\)là nghiệm của K(x)
hay \(K\left(\frac{3}{2}\right)=0\Leftrightarrow6.\left(\frac{3}{2}\right)^3-2.\left(\frac{3}{2}\right)^2-\frac{3}{2}a-2=0\)
\(\Leftrightarrow\frac{81}{4}-\frac{9}{2}-\frac{3}{2}a-2=0\Leftrightarrow\frac{3}{2}a=\frac{55}{4}\)
\(\Leftrightarrow a=\frac{55}{6}\)
Vậy \(a=\frac{55}{6}\)thì \(6x^3-2x^2-ax-2\)chia hết cho 2x - 3
Bài 1:
a: \(=\dfrac{2x^4-8x^3+2x^2+2x^3-8x^2+2x+18x^2-72x+18+56x-15}{x^2-4x+1}\)
\(=2x^2+2x+18+\dfrac{56x-15}{x^2-4x+1}\)
a: 3x^3+2x^2-7x+a chia hêt cho 3x-1
=>3x^3-x^2+3x^2-x-6x+2+a-2 chia hết cho 3x-1
=>a-2=0
=>a=2
c: =>2x^2-6x+(a+6)x-3a-18+3a+19 chia x-3 dư 4
=>3a+19=4
=>3a=-15
=>a=-5
d: 2x^3-x^2+ax+b chiahêt cho x^2-1
=>2x^3-2x-x^2+1+(a+2)x+b-1 chia hết cho x^2-1
=>a+2=0 và b-1=0
=>a=-2 và b=1
Mình nghĩ là sửa A = 2x3 + 7x2 + ax + 3 thì sẽ hợp lí hơn :)
A = 2x3 + 7x2 + ax + 3
B = ( x + 1 )2 = x2 + 2x + 1
A bậc 3, B bậc 2 => Thương bậc 1
Hệ số cao nhất của A là 2, hệ số cao nhất của B là 1 => Hệ số cao nhất của thương là 1
Hệ số tự do của A là 3, hệ số tự do của B là 1 => Hệ số tự do của thương là 3
=> Đặt thương là C = 2x + 3
Khi đó A chia hết cho B
⇔ A = BC
⇔ 2x3 + 7x2 + ax + 3 = ( 2x + 3 )( x2 + 2x + 1 )
⇔ 2x3 + 7x2 + ax + 3 = 2x3 + 4x2 + 2x + 3x2 + 6x + 3
⇔ 2x3 + 7x2 + ax + 3 = 2x3 + 7x2 + 8x + 3
⇔ a = 8
Vậy a = 8
Ta có x3 + ax + b \(⋮\)x2 - 2x - 3
<=> x3 + ax + b \(⋮\)(x - 3)(x + 1)
=> x = 3 và x = -1 là nghiệm của x3 + ax + b
Khi đó 33 + 3a + b = 0
<=> 3a + b = -27 (1)
Lại có -13 - a + b = 0
<=> -a + b = 1 (2)
Từ (1) và (2) => a = -7 ; b = -6
Vậy a = -7 ; b = -6 thì x3 + ax + b \(⋮\)x2 - 2x - 3
Lời giải:
Đặt $f(x)=ax^3+bx^2-11x+10$
$x^2+x-2=(x-1)(x+2)$
Do đó để $f(x)\vdots x^2+x-2$ thì $f(x)\vdots x-1$ và $f(x)\vdots x+2$
$\Leftrightarrow f(1)=f(-2)=0$ (theo định lý Bê-du về phép chia đa thức)
$\Leftrightarrow a+b-1=-8a+4b+32=0$
$\Leftrightarrow a=3; b=-2$