Bài 3: Cho ABC cân tại a, biết AB = 5cm, BC = 6cm. Gọi H là trung điểm của BC.
a) Chứng minh: ABH = ACH. b) Chứng minh: AH BC. c) Tính AH.
d) Kẻ HE AB (E
AB), HK AC (K
AC). Chứng minh: HE = HK.
e) Chứng minh: EK // BC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Gọi (D):y=ax+b chứa điểm A, C
(D'):y=a'x+b' chứa điểm B, C
* Ta có: A thuộc (D) khi 1= 2a+b (1)
C thuộc (D) khi 4= 3a+b (2)
Giải hệ (1), (2) ta suy ra a=3 , b=-5
* Ta có: B thuộc (D') khi 3=6a'+b' (3)
C thuộc (D') khi 4=3a'+b' (4)
Giải hệ (3), (4) ta suy ra a=-1/3 , b= 5
Ta thấy: a.a' = 3.(-1/3)=-1
Suy ra (D) vuông góc (D') tại điểm chung C của của 2 cạnh (5)
Vậy tam giác ABC vuông tại C
Theo công thức tính cạnh của đoạn thẳng trong hệ trục tọa độ ta có:
AC=\(\sqrt{\left(x_A-x_C\right)^2+\left(y_A-y_C\right)^2}=\sqrt{\left(2-3\right)^2+\left(1-4\right)^2}\)\(=\sqrt{10}\)
BC=\(\sqrt{\left(x_B-x_C\right)^2+\left(y_B-y_C\right)^2}=\sqrt{\left(6-3\right)^2+\left(3-4\right)^2}\)\(=\sqrt{10}\)
Vậy AC=BC (6)
Từ (5) và (6) ta suy ra tam giác ABC vuông cân tại C
SABC=\(\dfrac{1}{2}\).AB.BC=\(\dfrac{1}{2}.\sqrt{10}.\sqrt{10}=\dfrac{1}{2}.10=\)5 (đvdt)
b. Làm tương tự câu a tìm độ dài các cạnh AB, BD, DA và tính diện tích bằng công thức SABD=\(\sqrt{p\left(p-AB\right)\left(p-BD\right)\left(p-DA\right)}\) với p là nửa chu vi tam giác ABD \(p=\dfrac{1}{2}\left(AB+BD+DA\right)\)
Tiếp tục dùng công thức SABD=\(=\dfrac{1}{2}.AB.BD.sinB\) các số liệu nêu trên đã có, chỉ cần thế vào là có góc B
Gọi I là tâm. Tìm độ dài bán kình bằng công thức SABD=\(\dfrac{AB.BD.DA}{4AI}\)
ta tìm được độ dài AI còn cách xác định tâm thì dựa vào giao điểm 2 đường thẳng (d) chứa đoạn AI và (d') chứa đoạn BI là xong
a) \(\widehat{BDM}=180^0-\widehat{BMD}-\widehat{DBM}=180^0-\widehat{BMD}-\widehat{DME}=\widehat{CME}\)
\(\Rightarrow\)△BMD∼△CEM (g-g)
b) \(\Rightarrow\dfrac{BD}{CM}=\dfrac{MD}{EM}\Rightarrow\dfrac{BD}{BM}=\dfrac{MD}{EM}\)
\(\Rightarrow\)△BMD∼△MED (c-g-c).
\(\Rightarrow\widehat{BDM}=\widehat{MDE}\Rightarrow\)DM là tia p/g góc BDE.
Gọi N là giao điểm của BM và AC. Do \(\widehat{NAM}=\widehat{NBA}\) nên \(\Delta NAM\) đồng dạng với \(\Delta NBA\), suy ra \(\dfrac{NA}{NB}=\dfrac{NM}{NA}\) \(\Rightarrow NA^2=NB.NM\) (1)
Mặt khác, vì tam giác ABC vuông cân tại A nên \(\widehat{ABC}=\widehat{ACB}=45^o\), lại có \(\widehat{MBA}=\widehat{MCA}\) nên ta có \(\widehat{ABC}-\widehat{MBA}=\widehat{ACB}-\widehat{MCA}\) hay \(\widehat{NBC}=\widehat{NCM}\). Từ đây có\(\Delta NCM\) đồng dạng với tam giác \(\Delta NBC\), suy ra \(\dfrac{NC}{NB}=\dfrac{NM}{NC}\Rightarrow NC^2=NB.NM\) (2)
Từ (1) và (2), suy ra \(NA^2=NC^2\left(=NB.NM\right)\) \(\Rightarrow NA=NC\), suy ra N là trung điểm của đoạn AC \(\Rightarrow\dfrac{AN}{AC}=\dfrac{1}{2}\). Mà \(AC=AB\) nên \(\dfrac{AN}{AB}=\dfrac{1}{2}\)
Mặt khác, \(\widehat{BAC}=\widehat{MAN}+\widehat{BAM}=90^o\), đồng thời \(\widehat{MAN}=\widehat{MBA}\) nên \(\widehat{MBA}+\widehat{BAM}=90^o\), do đó \(\Delta ABM\) vuông tại M \(\Rightarrow\widehat{AMB}=90^o\). Từ đó lại suy ra \(\Delta BAM\) và \(\Delta BNA\) đồng dạng, suy ra \(\dfrac{AN}{AM}=\dfrac{BA}{BM}\) hay \(\dfrac{AN}{AB}=\dfrac{AM}{BM}\). Nhưng do \(\dfrac{AN}{AB}=\dfrac{1}{2}\left(cmt\right)\) nên \(\dfrac{AM}{BM}=\dfrac{1}{2}\Rightarrow BM=2AM\) (đpcm)
a: Xét ΔAHB và ΔAHC có
AH chung
HB=HC
AB=AC
Do đó: ΔAHB=ΔAHC
b: ΔAHB=ΔAHC
=>\(\widehat{AHB}=\widehat{AHC}\)
mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)
nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)
=>AH\(\perp\)BC
c: H là trung điểm của BC
=>\(HB=HC=\dfrac{BC}{2}=3\left(cm\right)\)
ΔAHB vuông tại H
=>\(HA^2+HB^2=AB^2\)
=>\(HA=\sqrt{5^2-3^2}=4\left(cm\right)\)
d: ΔAHB=ΔAHC
=>\(\widehat{HAB}=\widehat{HAC}\)
Xét ΔAEH vuông tại E và ΔAKH vuông tại K có
AH chung
\(\widehat{EAH}=\widehat{KAH}\)
Do đó: ΔAEH=ΔAKH
=>HE=HK
e: ΔAEH=ΔAKH
=>AE=AK
Xét ΔABC có \(\dfrac{AE}{AB}=\dfrac{AK}{AC}\)
nên EK//BC