với a>0, b>0 và \(a^2+b^2=4\)
tính: \(M=\frac{ab}{a+b+2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Bình phương 2 vế được: \(\frac{4ab}{a+b+2\sqrt{ab}}\le\sqrt{ab}\)
<=> \(4ab\le\sqrt{ab}\left(a+b\right)+2ab\)
<=>\(\sqrt{ab}\left(a+b\right)\ge2ab\)
<=>\(a+b\ge2\sqrt{ab}\)
<=> \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) (luôn đúng)
Vậy \(\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\le\sqrt[4]{ab}\forall a,b>0\)
Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) và BĐT AM-GM ta có:
\(P=\frac{2}{a^2+b^2}+\frac{2}{2ab}+\frac{32}{ab}+2ab+\frac{2}{ab}\)
\(\ge\frac{2.4}{a^2+b^2+2ab}+2\sqrt{\frac{32}{ab}.2ab}+\frac{2}{ab}\)
\(\ge\frac{8}{\left(a+b\right)^2}+2.\sqrt{64}+\frac{2}{\frac{\left(a+b\right)^2}{4}}\)
\(\ge\frac{8}{4^2}+2.8+\frac{8}{\left(a+b\right)^2}\ge\frac{1}{2}+16+\frac{8}{4^2}=\frac{1}{2}+16+\frac{1}{2}=17\)
Nên GTNN của P là 17 đạt được khi a=b=2
https://www.olm.vn/hoi-dap/detail/7715665734.html
bạn kham khảo tại link này nhé.
a) \(a^2+b^2-2ab=\left(a-b\right)^2\ge0\)
b) \(\frac{a^2+b^2}{2}=\frac{a^2}{2}+\frac{b^2}{2}\ge2\sqrt{\frac{a^2}{2}.\frac{b^2}{2}}=2ab\)
c)\(a\left(a+2\right)=a^2+2a< a^2+2a+1=\left(a+1\right)^2\)
TOÀN BÀI BẤT ĐẲNG THỨC CƠ BẢN. TỰ LÀM NỐT NHÉ. NHỚ BẤM ĐÚNG CHO MÌNH
Ta có: \(\frac{a+b}{3}=\frac{b+c}{4}=\frac{c+a}{5}=\frac{a+b+b+c+c+a}{3+4+5}=\frac{2.\left(a+b+c\right)}{12}\)
\(=\frac{a+b+c}{6}\)
\(\Rightarrow\) Thay M vào tính
Ta có: \(a^2+b^2=4\Rightarrow2ab=a+b^2-4\)
\(\Rightarrow2M=\frac{a+b^2-4}{a+b+2}=a+b-2\)
Ta có: \(a+b\le\sqrt{2.a^2+b^2}=2\sqrt{2}\Rightarrow M\le\sqrt{2}-1\)
Dấu \(=\)xảy ra khi và chỉ khi \(a=b=\sqrt{2}\)
Vậy: GTLN của \(M=\sqrt{2}-1\)khi \(a=b=\sqrt{2}\)
P/s: Ko chắc lắm