K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2017

Ta có: \(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}+\frac{d}{d+1}\le1\)

\(\Rightarrow\left\{\begin{matrix}\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\le1-\frac{d}{d+1}=\frac{1}{d+1}\\\frac{b}{b+1}+\frac{c}{c+1}+\frac{d}{d+1}\le1-\frac{a}{a+1}=\frac{1}{a+1}\\\frac{a}{a+1}+\frac{c}{c+1}+\frac{d}{d+1}\le1-\frac{b}{b+1}=\frac{1}{b+1}\\\frac{a}{a+1}+\frac{b}{b+1}+\frac{d}{d+1}\le1-\frac{c}{c+1}=\frac{1}{c+1}\end{matrix}\right.\)

Áp dụng BĐT Cauchy cho 3 bộ số thực không âm

\(\Rightarrow\left\{\begin{matrix}\frac{1}{d+1}\ge\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\ge3\sqrt[3]{\frac{abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\\\frac{1}{a+1}\ge\frac{b}{b+1}+\frac{c}{c+1}+\frac{d}{d+1}\ge3\sqrt[3]{\frac{bcd}{\left(b+1\right)\left(c+1\right)\left(d+1\right)}}\\\frac{1}{b+1}\ge\frac{a}{a+1}+\frac{c}{c+1}+\frac{d}{d+1}\ge3\sqrt[3]{\frac{acd}{\left(a+1\right)\left(c+1\right)\left(d+1\right)}}\\\frac{1}{c+1}\ge\frac{a}{a+1}+\frac{b}{b+1}+\frac{d}{d+1}\ge3\sqrt[3]{\frac{abd}{\left(a+1\right)\left(b+1\right)\left(d+1\right)}}\end{matrix}\right.\)

Nhân từng vế:

\(\Rightarrow\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\ge81\sqrt[3]{\frac{a^3b^3c^3d^3}{\left(a+1\right)^3\left(b+1\right)^3\left(c+1\right)^3}}\)

\(\Rightarrow\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\ge\frac{81abcd}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\)

\(\Rightarrow1\ge81abcd\)

Vậy \(abcd\le\frac{1}{81}\left(đpcm\right)\)

p/s : lí do tớ tự trả lời câu hỏi của mình là để coi câu trả lời của mình có đúng hay ko thôi nha , mong các bạn đứng có hiểu lầm , nếu bạn nào có cách nào nhanh và gọn hơn thì phiền các bạn chỉ dùm luôn nha.

AH
Akai Haruma
Giáo viên
2 tháng 2 2017

Mình nghĩ cách làm của bạn là ok rồi đấy

Bản chất là ngắn, có điều bạn trình bày quá cẩn thận nên khiến nó dài thôi. Khuyên chân thành là nếu đi thi sau khi áp dụng quy tắc "tương tự" để đỡ tốn thời gian hơn, cũng k bị mất điểm.

12 tháng 7 2017

Ta chứng minh bất đẳng thức sau  

Với x, y, z > 0 ta luôn có  \(x^4+y^4+z^4\ge xyz\left(x+y+z\right)\)  (1)

Theo BĐT Cô-si

\(x^4+x^4+y^4+z^4\ge4\sqrt[4]{x^8y^4z^4}=4x^2yz\)

\(y^4+y^4+z^4+x^4\ge4\sqrt[4]{y^8z^4x^4}=4y^2zx\)

\(z^4+z^4+x^4+y^4\ge4\sqrt[4]{z^8x^4y^4}=4z^2xy\)

Cộng vế theo vế ta được:  \(4\left(x^4+y^4+z^4\right)\ge4\left(x^2yz+y^2zx+z^2xy\right)\)

\(\Leftrightarrow\)  \(x^4+y^4+z^4\ge xyz\left(x+y+z\right)\)

Vậy (1) đc c/m

Bất đẳng thức cần c/m có thể viết lại thành

\(\frac{abcd}{a^4+b^4+c^4+abcd}+\frac{abcd}{b^4+c^4+d^4+abcd}+\frac{abcd}{c^4+d^4+a^4+abcd}+\frac{abcd}{d^4+a^4+b^4+abcd}\le1\)

Áp dụng (1) ta có  

\(\frac{abcd}{a^4+b^4+c^4+abcd}\le\frac{abcd}{abc\left(a+b+c\right)+abcd}=\frac{abcd}{abc\left(a+b+c+d\right)}=\frac{d}{a+b+c+d}\)

Tương tự  

\(\frac{abcd}{b^4+c^4+d^4+abcd}\le\frac{a}{a+b+c+d}\)

\(\frac{abcd}{c^4+d^4+a^4+abcd}\le\frac{b}{a+b+c+d}\)

\(\frac{abcd}{d^4+a^4+b^4+abcd}\le\frac{c}{a+b+c+d}\)

Cộng theo vế suy ra đpcm.

6 tháng 1 2018

Theo BĐT AM-GM: \(a^4+b^4\ge2a^2b^2\)

Tương tự suy ra \(a^4+b^4+c^4\)\(\ge a^2b^2+b^2c^2+c^2a^2\)

Tiếp tục dùng AM-GM: \(a^2b^2+b^2c^2=b^2\left(a^2+c^2\right)\ge2ab^2c\)

Tương tự suy ra \(a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\)

\(\Rightarrow a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

\(\Rightarrow a^4+b^4+c^4+abcd\ge abc\left(a+b+c\right)+abcd\)\(=abc\left(a+b+c+d\right)\)

\(\Rightarrow\frac{1}{a^4+b^4+c^4+abcd}\le\frac{1}{abc\left(a+b+c+d\right)}\)

Tương tự cho 3 BĐT còn lại rồi cộng theo vế:

\(VT\le\frac{a+b+c+d}{abcd\left(a+b+c+d\right)}=\frac{1}{abcd}=VP\)

5 tháng 1 2018

sorry nha!Mik ko bít làm.???

NV
17 tháng 11 2019

Chắc bạn ghi nhầm đề, ko có số hạng \(\frac{1}{1+d}\)

\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2\)

\(\Leftrightarrow\frac{1}{1+a}\ge1-\frac{1}{1+b}+1-\frac{1}{1+c}=\frac{b}{1+b}+\frac{c}{1+c}\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\)

Tương tự ta có:

\(\frac{1}{1+b}\ge2\sqrt{\frac{ca}{\left(1+c\right)\left(1+a\right)}}\) ; \(\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\)

Nhân vế với vế:

\(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge\frac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)

\(\Leftrightarrow abc\le\frac{1}{8}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{2}\)

17 tháng 11 2019

Cảm ơn bạn. Mk viết nhầm đề và kiểm tra lại mk làm đc rồi

8 tháng 4 2016

ngu nguoi

8 tháng 4 2016

ngu nguoi