A=(1/x-2+2x/x2-4+1/x+2).(2/x-1)
a) Rút gọn biểu thức A
b) Tìm x để A=1
help me.thank
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(A=\left(\dfrac{1}{x-2}+\dfrac{2x}{x^2-4}+\dfrac{1}{x+2}\right)\cdot\left(\dfrac{2}{x}-1\right)\)
\(=\dfrac{x+2+2x+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{2-x}{x}\)
\(=\dfrac{4x}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{-\left(x-2\right)}{x}\)
\(=\dfrac{-4}{x+2}\)
b) Để A=1 thì x+2=-4
hay x=-6(nhận)
a: \(A=4x-3x^2+20-15x-9x^2-12x-4+\left(2x+1\right)^3-\left(8x^3-1\right)\)
\(=-12x^2-23x+16+8x^3+12x^2+6x+1-8x^3+1\)
\(=-17x+18\)
\(a,A=\dfrac{x^2-3x+2+x^2+3x+2-x^2+2x-4}{\left(x+2\right)\left(x-2\right)}=\dfrac{x^2+2x}{\left(x+2\right)\left(x-2\right)}\\ A=\dfrac{x\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{x}{x-2}\\ b,A=\dfrac{x-2+2}{x-2}=1+\dfrac{2}{x-2}\in Z\\ \Rightarrow x-2\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\\ \Rightarrow x\in\left\{0;1;3;4\right\}\)
Lời giải:
ĐK: $x\neq \pm 2; x\neq 0$
a)
\(A=\left[\frac{x+2}{(x+2)(x-2)}+\frac{2x}{(x-2)(x+2)}+\frac{x-2}{(x-2)(x+2)}\right].\frac{2-x}{x}=\frac{x+2+2x+x-2}{(x-2)(x+2)}.\frac{-(x-2)}{x}\)
\(=\frac{4x}{(x-2)(x+2)}.\frac{-(x-2)}{x}=\frac{-4}{x+2}\)
b) Để $A=1\Leftrightarrow \frac{-4}{x+2}=1$
$\Leftrightarrow x+2=-4$
$\Leftrightarrow x=-6$ (thỏa ĐKXĐ)
Vậy $x=-6$
a, \(A=\left(\frac{1}{x-2}+\frac{2x}{x^2-4}+\frac{1}{x+2}\right).\left(\frac{2}{x}-1\right)\) \(\left(ĐK:x\ne\pm2\right)\)
\(A=\left(\frac{x+2}{\left(x-2\right)\left(x+2\right)}+\frac{2x}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right).\left(\frac{2}{x}-\frac{x}{x}\right)\)
\(A=\frac{x+2+2x+x-2}{\left(x-2\right)\left(x+2\right)}.\frac{2-x}{x}\)
\(A=\frac{4x}{\left(x-2\right)\left(x+2\right)}.\frac{-\left(x-2\right)}{x}\)
\(A=\frac{-4x.\left(x-2\right)}{\left(x-2\right)\left(x+2\right).x}\)
\(A=\frac{-4}{x+2}\)
b, \(A=\frac{-4}{x+2}=1\)
\(\rightarrow\frac{-4}{x+2}=\frac{x+2}{x+2}\)
\(\rightarrow-4=x+2\)
\(\rightarrow-6=x\)
a) ĐKXĐ của A là x\(\ne\pm2\); x\(\ne1\)
Ta có
A= \((\frac{1}{x-2}+\frac{2x}{x^2-4}+\frac{1}{x+2})\cdot\frac{2}{x-1}\)
A=\(\frac{x+2+2x+x-2}{\left(x-2\right)\cdot\left(x+2\right)}\cdot\frac{2}{x-1}\)
A=\(\frac{6x}{\left(x-1\right)\left(x-2\right)\left(x+2\right)}\)