Chứng minh rằng đa thức này trong phép chia luôn dương với mọi x
x2 - x + 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 -x + 2 = x2 - 2x.\(\frac{1}{2}\) + \(\frac{1}{4}\) +\(\frac{7}{4}\)
= (x -\(\frac{1}{2}\) )2 + \(\frac{7}{4}\)
3 x 2 – 2x + 2 = ( x 2 – 2x + 1) + 2 x 2 + 1
= x - 1 2 + 2 x 2 + 1 > 0 với mọi x.
a) kết quả là x^2-2x+3
b) CM NÈ:
X^2-2X+3=(X^2-2X+1)+2=(X-1)^2+2
VÌ (X-1)^2>=0 VỚI MỌI X=>(X-1)^2+2>0 VỚI MỌI x=> GIÁ TRỊ BIỂU THỨC LUÔN DƯƠNG
`x^4+2x^2+1`
`=(x^2)^2 + 2.x^2 .1 + 1^2`
`=(x^2+1)^2 > 0 forall x`.
Điều kiện x ≠ 1 và x ≠ - 1
Ta có:
Biểu thức dương khi x 2 + 2 x + 3 > 0
Ta có: x 2 + 2 x + 3 = x 2 + 2 x + 1 + 2 = x + 1 2 + 2 > 0 với mọi giá trị của x.
Vậy giá trị của biểu thức dương với mọi giá trị x ≠ 1 và x ≠ - 1
\(1,x^2-x+1=x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0=>\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\) (với mọi x)
Vậy ........
\(2,a,\left(x-3\right)\left(1-x\right)-2=x-x^2-3+3x-2=-x^2+4x-5=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-4x+4+1\right)=-\left(x^2-2.x.2+2^2+1\right)=-\left[\left(x-2\right)^2+1\right]=-1-\left(x-2\right)^2\)
Vì \(\left(x-2\right)^2\ge0=>-\left(x-2\right)^2\le0=>-1-\left(x-2\right)^2\le-1< 0\) (với mọi x)
Vậy........
\(b,\left(x+4\right)\left(2-x\right)-10=2x-x^2+8-4x-10=-x^2-2x-2=-\left(x^2+2x+2\right)=-\left(x^2+2x+1+1\right)\)
\(=-\left(x^2+2.x.1+1^2+1\right)=-\left(x+1\right)^2+1=-1-\left(x+1\right)^2\le-1< 0\) (với mọi x)
Vậy.......
Lời giải:
$(1,2x^4+0,4x^2-3)-(0,2x^4+0,4x^2-9)=x^4+6=(x^2)^2+6\geq 0+6>0$ với mọi giá trị thực của $x$
Do đó ta có đpcm.
theo đề bài ta có
x^2-x-2
=x^2-2x1/2+1/4-1/4+2
=(x^2-2x1/2+1/4)+(2-1/4)
=(x-1/2)^2+7/4
vì (x-1/2)^2>0
=>(x-1/2)^2+7/4>7/4
vậy đa thức này trong phép chia luôn dương với mọi x
ok không??????