K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2018

a/b=a(b+2001)/b(b+2001)=ab+2001a/b(b+2001)

a+2001/b+2001=(a+2001)b/(b+2001)b=ab+2001b/b(b+2001)

vì b>0 nên mẫu của 2 phân số tử dương

ab+2001a với ab+2001b

nếu a<b =>tử số phân số thứ nhất bé thua tử số phân số thứ hai

=>\(\frac{a}{b}\)<a+\(\frac{2001}{b}\)+2001

-nếu a=b=>hai phân số bằng nhau bằng 1

-nếu a>b=>tử số phân số thứ nhất lớn hơn tử số phân số thứ hai

=>\(\frac{a}{b}\)>\(\frac{a+2001}{b+2001}\)

23 tháng 7 2015

\(a>b>0\Rightarrow\frac{a}{b}=\frac{2a}{2b}=\frac{2a}{b+b}<\frac{2a}{a+b}\)

\(\frac{x}{y}=\frac{y}{z}\Rightarrow\frac{x}{z}=\frac{x}{y}.\frac{y}{z}=\frac{x^2}{y^2}=\frac{y^2}{z^2}=\frac{x^2+y^2}{y^2+z^2}\)

1 tháng 7 2015

a)Do b,d>0

\(\frac{a}{b}>\frac{c}{d}\Rightarrow\frac{a.d}{b.d}>\frac{c.b}{b.d}\Rightarrow a.d>b.c\)

b)Do b,d>0

=>\(ad>bc\Leftrightarrow\frac{ad}{bd}>\frac{bc}{bd}\Rightarrow\frac{a}{b}>\frac{c}{d}\)

13 tháng 8 2017

3) Đặt b+c=x;c+a=y;a+b=z.

=>a=(y+z-x)/2 ; b=(x+z-y)/2 ; c=(x+y-z)/2

BĐT cần CM <=> \(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\ge\frac{3}{2}\)

VT=\(\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}-1+\frac{x}{y}+\frac{z}{y}-1+\frac{x}{z}+\frac{y}{z}-1\right)\)

\(=\frac{1}{2}\left[\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)-3\right]\)

\(\ge\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)(Cauchy)

Dấu''='' tự giải ra nhá

13 tháng 8 2017

Bài 4 

dễ chứng minh \(\left(a+b\right)^2\ge4ab;\left(b+c\right)^2\ge4bc;\left(a+c\right)^2\ge4ac\)

\(\Rightarrow\left(a+b\right)^2\left(b+c\right)^2\left(a+c\right)^2\ge64a^2b^2c^2\)

rồi khai căn ra \(\Rightarrow\)dpcm. 

đấu " = " xảy ra \(\Leftrightarrow\)\(a=b=c\)