cho a,b thuôc z,a>b>0
chứng minh rằng a/b<a+2009/b+2009
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/b=a(b+2001)/b(b+2001)=ab+2001a/b(b+2001)
a+2001/b+2001=(a+2001)b/(b+2001)b=ab+2001b/b(b+2001)
vì b>0 nên mẫu của 2 phân số tử dương
ab+2001a với ab+2001b
nếu a<b =>tử số phân số thứ nhất bé thua tử số phân số thứ hai
=>\(\frac{a}{b}\)<a+\(\frac{2001}{b}\)+2001
-nếu a=b=>hai phân số bằng nhau bằng 1
-nếu a>b=>tử số phân số thứ nhất lớn hơn tử số phân số thứ hai
=>\(\frac{a}{b}\)>\(\frac{a+2001}{b+2001}\)
3) Đặt b+c=x;c+a=y;a+b=z.
=>a=(y+z-x)/2 ; b=(x+z-y)/2 ; c=(x+y-z)/2
BĐT cần CM <=> \(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\ge\frac{3}{2}\)
VT=\(\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}-1+\frac{x}{y}+\frac{z}{y}-1+\frac{x}{z}+\frac{y}{z}-1\right)\)
\(=\frac{1}{2}\left[\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)-3\right]\)
\(\ge\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)(Cauchy)
Dấu''='' tự giải ra nhá
Bài 4
dễ chứng minh \(\left(a+b\right)^2\ge4ab;\left(b+c\right)^2\ge4bc;\left(a+c\right)^2\ge4ac\)
\(\Rightarrow\left(a+b\right)^2\left(b+c\right)^2\left(a+c\right)^2\ge64a^2b^2c^2\)
rồi khai căn ra \(\Rightarrow\)dpcm.
đấu " = " xảy ra \(\Leftrightarrow\)\(a=b=c\)