K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ta có: EF//BA

AC\(\perp\)BA

Do đó: EF\(\perp\)AC tại E

Xét tứ giác ABFE có \(\widehat{ABF}=\widehat{AEF}=\widehat{BAE}=90^0\)

nên ABFE là hình chữ nhật

b: Xét tứ giác AFCK có

E là trung điểm chung của AC và FK

=>AFCK là hình bình hành

Hình bình hành AFCK có AC\(\perp\)FK

nên AFCK là hình thoi

c: Xét ΔCAH có

E,M lần lượt là trung điểm của CA,CH

=>EM là đường trung bình của ΔCAH

=>EM//AH và EM=1/2AH

Ta có: EM//AH

AH\(\perp\)BC

Do đó: EM\(\perp\)BC tại M

=>ΔEMB vuông tại M

Ta có: \(\widehat{EMB}=\widehat{EAB}=\widehat{EFB}=90^0\)

=>E,M,A,B,F cùng thuộc đường tròn đường kính BE(1)

Ta có: ABFE là hình chữ nhật

=>A,B,F,E cùng thuộc đường tròn đường kính AF và BE(2)

Từ (1),(2) suy ra M nằm trên đường tròn đường kính AF

=>MA\(\perp\)MF

d: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AB=\sqrt{20^2-16^2}=12\left(cm\right)\)

Xét ΔCAB có DE//AB

nên \(\dfrac{DE}{AB}=\dfrac{CE}{CA}\)

=>\(\dfrac{DE}{12}=\dfrac{1}{2}\)

=>DE=12/2=6(cm)

12 tháng 1 2017

cho  tam giác ABC ( AB khác AC) . tia phân giác Ax của góc A cắt BC ở D. từ D kẻ một đường thẳng song song với AB cắt AC tại F.từ D kẻ đường thẳng song song với AC cắt AB ở E.

a) CM AE=ED=DF=FA

b) từ trung điểm M của cạnh BC kẻ đường thẳng vuông góc với AC tại Pva cắt đường thẳng AB tại Q.CM EF song song với PQ.

c) CM BP=CQ

30 tháng 12 2021

a: Xét ΔHAB có 

M là trung điểm của HA

N là trung điểm của HB

Do đó: MN là đường trung bình

=>MN//AB

hay ABNM là hình thang

a: ΔHEB vuông tại H có góc HBE=45 độ

nên ΔHEB vuông cân tại H

b: KH//AB

=>gó KHE=góc HEB=45 độ

=>ΔKHM vuôngtại K

=>KH=KM

ΔCKH vuông tại K có góc C=45 độ

nên ΔCKH vuông cân tại K

=>KC=KH=KM

=>K là trung điểm của MC

 

4 tháng 1 2017

a) Xét tứ giác ADME có:

∠(DAE) = ∠(ADM) = ∠(AEM) = 90o

⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).

b) Ta có ME // AB ( cùng vuông góc AC)

M là trung điểm của BC (gt)

⇒ E là trung điểm của AC.

Ta có E là trung điểm của AC (cmt)

Chứng minh tương tự ta có D là trung điểm của AB

Do đó DE là đường trung bình của ΔABC

⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC

⇒ Tứ giác CMDE là hình bình hành.

c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)

Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)

DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)

Từ (1) và (2) ⇒ MHDE là hình thang cân.

d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH

Xét ΔDIH và ΔKIA có

IH = IA

∠DIH = ∠AIK (đối đỉnh),

∠H1 = ∠A1(so le trong)

ΔDIH = ΔKIA (g.c.g)

⇒ ID = IK

Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành

⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC

a: Ta có: BM//EF

EF\(\perp\)AH

Do đó: AH\(\perp\)BM

Xét ΔAMB có

AH là đường cao

AH là đường phân giác

Do đó: ΔAMB cân tại A

b: Xét ΔAFE có 

AH vừa là đường cao, vừa là đường phân giác

Do đó: ΔAFE cân tại A

=>AF=AE

Ta có: AF+FM=AM

AE+EB=AB

mà AF=AE và AM=AB

nên FM=EB

Xét ΔCMB có

D là trung điểm của CB

DF//MB

Do đó: F là trung điểm của CM

=>CF=FM

=>CF=FM=EB

23 tháng 1

phần c đâu ạ

 

a: Xét tứ giác AEMF có

AE//MF

AF//ME

Do đó: AEMF là hình bình hành

Hình bình hành AEMF có \(\widehat{FAE}=90^0\)

nên AEMF là hình chữ nhật

b: Xét ΔABC có

E là trung điểm của BA

EM//AC

Do đó: M là trung điểm của BC

Xét ΔABC có

M là trung điểm của BC

MF//AB

Do đó: F là trung điểm của AC

Xét ΔABC có

E,F lần lượt là trung điểm của AB,AC

=>EF là đường trung bình

=>EF//BC

=>EF//MH

ΔHAC vuông tại H

mà HF là đường trung tuyến

nên \(HF=AF\)

mà AF=ME(AEMF là hình chữ nhật)

nên ME=FH

Xét tứ giác MHEF có MH//EF

nên MHEFlà hình thang

mà ME=FH

nên MHEF là hình thang cân

6 tháng 11 2019

Bài này giải kiểu j vậy ???