K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2017

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2017}{2019}\)

\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{x\left(x+1\right)}=\frac{2017}{2019}\)

\(\Leftrightarrow\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+....+\frac{2}{x\left(x+1\right)}=\frac{2017}{2019}\)

\(\Leftrightarrow2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{\left(x+1\right)}\right)=\frac{2017}{2019}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{\left(x+1\right)}=\frac{2017}{2019}\div2\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{\left(x+1\right)}=\frac{2017}{4038}\)

\(\Leftrightarrow\frac{1}{\left(x+1\right)}=\frac{1}{2}-\frac{2017}{4038}\)

\(\Leftrightarrow\frac{1}{\left(x+1\right)}=\frac{1}{2019}\)

\(\Leftrightarrow x+1=2019\)

\(\Leftrightarrow x=2019-1\)

\(\Leftrightarrow x=2018\)

Vậy x = 2018 

8 tháng 11 2017

chị ơi bài này em học từ lớp 6 rồi( ngay đầu vào luôn ) nhung dốt nát lè

7 tháng 8 2018

help me

7 tháng 8 2018

\(a)\) Ta có : 

\(VP=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{2}{2017}+\frac{1}{2018}\)

\(VP=\left(\frac{2018}{1}-1-...-1\right)+\left(\frac{2017}{2}+1\right)+\left(\frac{2016}{3}+1\right)+...+\left(\frac{2}{2017}+1\right)+\left(\frac{1}{2018}+1\right)\)

\(VP=1+\frac{2019}{2}+\frac{2019}{3}+...+\frac{2019}{2017}+\frac{2019}{2018}\)

\(VP=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)\)

Lại có : 

\(VT=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\right).x\)

\(\Rightarrow\)\(x=2019\)

Vậy \(x=2019\)

Chúc bạn học tốt ~ 

6 tháng 9 2020

Dài đấy :))

a) \(\left|x-1\right|-\left(-2\right)^3=9\cdot\left(-1\right)^{100}\)

\(\Leftrightarrow\left|x-1\right|-\left(-8\right)=9\cdot1\)

\(\Leftrightarrow\left|x-1\right|+8=9\)

\(\Leftrightarrow\left|x-1\right|=1\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=1\\x-1=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}\)

b) \(\frac{x-2}{-4}=\frac{-9}{x-2}\)( ĐKXĐ : \(x\ne2\))

\(\Leftrightarrow\left(x-2\right)\left(x-2\right)=-4\cdot\left(-9\right)\)

\(\Leftrightarrow\left(x-2\right)^2=36\)

\(\Leftrightarrow\left(x-2\right)^2=\left(\pm6\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=6\\x-2=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=8\\x=-4\end{cases}}\left(tmđk\right)\)

c) \(\frac{x-5}{3}=\frac{-12}{5-x}\)( ĐKXĐ : \(x\ne5\))

\(\Leftrightarrow\frac{x-5}{3}=\frac{-12}{-\left(x-5\right)}\)

\(\Leftrightarrow\frac{x-5}{3}=\frac{12}{x-5}\)

\(\Leftrightarrow\left(x-5\right)\left(x-5\right)=3\cdot12\)

\(\Leftrightarrow\left(x-5\right)^2=36\)

\(\Leftrightarrow\left(x-5\right)^2=\left(\pm6\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}x-5=6\\x-5=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=11\\x=-1\end{cases}}\left(tmđk\right)\)

d) \(8x-\left|4x+\frac{3}{4}\right|=x+2\)

\(\Leftrightarrow8x-x-2=\left|4x+\frac{3}{4}\right|\)

\(\Leftrightarrow7x-2=\left|4x+\frac{3}{4}\right|\)(*)

\(\left|4x+\frac{3}{4}\right|\ge0\Leftrightarrow4x+\frac{3}{4}\ge0\Leftrightarrow x\ge-\frac{3}{16}\)

Vậy ta xét hai trường hợp sau :

1. \(x\ge-\frac{3}{16}\)

(*) <=>\(7x-2=4x+\frac{3}{4}\)

\(\Leftrightarrow7x-4x=\frac{3}{4}+2\)

\(\Leftrightarrow3x=\frac{11}{4}\)

\(\Leftrightarrow x=\frac{11}{12}\)(tmđk)

2. \(x< -\frac{3}{16}\)

(*) <=> \(7x-2=-\left(4x+\frac{3}{4}\right)\)

\(\Leftrightarrow7x-2=-4x-\frac{3}{4}\)

\(\Leftrightarrow7x+4x=-\frac{3}{4}+2\)

\(\Leftrightarrow11x=\frac{5}{4}\)

\(\Leftrightarrow x=\frac{5}{44}\left(ktmđk\right)\)

Vậy x = 11/12

e) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2019}{2020}\)

\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2019}{2020}\)

\(\Leftrightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2019}{2020}\)

\(\Leftrightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2019}{4040}\)

\(\Leftrightarrow\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\left(x+1\right)}=\frac{2019}{4040}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2019}{4040}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2019}{4040}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{4040}\)

\(\Leftrightarrow x+1=4040\)

\(\Leftrightarrow x=4039\)

8 tháng 9 2020

ĐKXD là gì vậy

16 tháng 9 2017

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left[x+1\right]}=\frac{2017}{2019}\)

\(\Leftrightarrow\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{x\left[x+1\right]}=\frac{2017}{2019}\)

\(\Rightarrow2\left[\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\left[x+1\right]}\right]=\frac{2017}{2019}\)

\(\Rightarrow2\left[\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right]=\frac{2017}{2019}\)

\(\Rightarrow2\left[\frac{1}{2}-\frac{1}{x+1}\right]=\frac{2017}{2019}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{\frac{2017}{2019}}{2}=\frac{2017}{4038}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2017}{4038}=\frac{1}{2019}\)

=> x + 1 = 2019 <=> x = 2018

3 tháng 8 2018

\(\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{x\left(x+3\right)}=\frac{303}{1540}\)

\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{303}{1540}\)

\(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)

\(\frac{1}{x+3}=\frac{1}{308}\)

\(\Rightarrow x+3=308\)

\(\Rightarrow x=305\)

3 tháng 8 2018

a) \(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x.\left(x+3\right)}=\frac{101}{1540}\)

\(\frac{1}{3}.\left(\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{x.\left(x+3\right)}\right)=\frac{101}{1540}\)

\(\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1540}\)

\(\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{101}{1540}\)

\(\frac{1}{5}-\frac{1}{x+3}=\frac{101}{1540}:\frac{1}{3}\)

\(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)

\(\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}\)

\(\frac{1}{x+3}=\frac{1}{308}\)

\(\Rightarrow x+3=308\)

\(\Leftrightarrow x=308-3\)

\(\Leftrightarrow x=305\)

Vậy \(x=305\)

8 tháng 5 2018

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x-1\right)}=\)\(\frac{2017}{2019}\)

\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x-1\right)}=\frac{2017}{2019}\)

\(2\left[\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right]=\frac{2017}{2019}\)

\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\)\(\frac{2017}{2019}\)

\(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2017}{2019}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{2017}{2019}:2\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{2017}{4038}\)

\(\frac{1}{x+1}=\frac{1}{2}-\frac{2017}{4038}\)

\(\frac{1}{x+1}=\frac{1}{2019}\)

x + 1 =2019

     x  = 2019-1 =2018

                       Vậy x = 2018

8 tháng 5 2018

   \(2\left(\frac{1}{3}.\frac{1}{2}+\frac{1}{6}.\frac{1}{2}+\frac{1}{10}.\frac{1}{2}+....+\frac{2}{x\left(x+1\right)}.\frac{1}{2}\right)=\frac{2017}{2019}\)

=>\(2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+....+\frac{1}{x\left(x+1\right)}\right)=\frac{2017}{2019}\)

=>\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{x\left(x+1\right)}\right)\)\(=\frac{2017}{2019}\)

=>\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2017}{2019}\)

=> \(2[\frac{1}{2}+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{4}\right)+....+\left(\frac{1}{x}-\frac{1}{x}\right)-\frac{1}{x+1}]=\frac{2017}{2019}\)

=>\(2\left(\frac{1}{2}+0+0+....+0-\frac{1}{x-1}\right)=\frac{2017}{2019}\)

=>\(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2017}{2019}\)

=>\(\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2017}{4038}\)

=>\(\frac{1}{x+1}=\frac{1}{2019}\)

=> x+1=2019

=>x=2018

21 tháng 7 2019

a) \(\frac{x-6}{7}+\frac{x-7}{8}+\frac{x-8}{9}=\frac{x-9}{10}+\frac{x-10}{11}+\frac{x-11}{12}\)

=> \(\left(\frac{x-6}{7}+1\right)+\left(\frac{x-7}{8}+1\right)+\left(\frac{x-8}{9}+1\right)=\left(\frac{x-9}{10}+1\right)+\left(\frac{x-10}{11}+1\right)+\left(\frac{x-11}{12}+1\right)\)

=> \(\frac{x+1}{7}+\frac{x+1}{8}+\frac{x+1}{9}-\frac{x+1}{10}-\frac{x+1}{11}+\frac{x+1}{12}=0\)

=> \(\left(x+1\right)\left(\frac{1}{7}+\frac{1}{8}+\frac{1}{9}-\frac{1}{10}-\frac{1}{11}-\frac{1}{12}\right)=0\)

=>  x + 1 = 0

=> x = -1

21 tháng 7 2019

b) \(\frac{x-1}{2020}+\frac{x-2}{2019}-\frac{x-3}{2018}=\frac{x-4}{2017}\)

=> \(\left(\frac{x-1}{2020}-1\right)+\left(\frac{x-2}{2019}-1\right)-\left(\frac{x-3}{2018}-1\right)=\left(\frac{x-4}{2017}-1\right)\)

=> \(\frac{x-2021}{2020}+\frac{x-2021}{2019}-\frac{x-2021}{2018}=\frac{x-2021}{2017}\)

=> \(\left(x-2021\right)\left(\frac{1}{2020}+\frac{1}{2019}-\frac{1}{2018}-\frac{1}{2017}\right)=0\)

=> x - 2021 = 0

=> x = 2021

c) \(\left(\frac{3}{4}x+3\right)-\left(\frac{2}{3}x-4\right)-\left(\frac{1}{6}x+1\right)=\left(\frac{1}{3}x+4\right)-\left(\frac{1}{3}x-3\right)\)

=> \(\frac{3}{4}x+3-\frac{2}{3}x+4-\frac{1}{6}x-1=\frac{1}{3}x+4-\frac{1}{3}x+3\)

=> \(-\frac{1}{12}x+6=7\)

=> \(-\frac{1}{12}x=1\)

=> x = -12

5 tháng 5 2017

\(1.\left(x+3\right)^3=\frac{1}{-27}\)

\(\left(x+3\right)^3=\left(\frac{1}{-3}\right)^3\)

\(\Rightarrow x+3=\frac{1}{-3}\)

\(\Rightarrow x=\frac{-1}{3}-3\)

\(x=\frac{-10}{3}\)

22 tháng 6 2019

Phần a vs phần b tính toán thông thường thôi mà bạn, vs 1 h/s lớp 7 thì ít nhất phải làm được chứ?? :((

a) \(x-\frac{4}{5}=\frac{7}{10}-\frac{3}{4}\)

\(\Leftrightarrow x-\frac{4}{5}=\frac{-1}{20}\)

\(\Leftrightarrow x=\frac{-1}{20}+\frac{4}{5}=\frac{15}{20}=\frac{3}{4}\)

b) \(2\frac{1}{3}-x=\frac{-5}{9}+2x\)

\(\Leftrightarrow2\frac{1}{3}-\frac{-5}{9}=2x+x\)

\(\Leftrightarrow3x=\frac{7}{3}+\frac{5}{9}\)

\(\Leftrightarrow3x=\frac{26}{9}\)

\(\Leftrightarrow x=\frac{26}{9}:3=\frac{26}{27}\)

d) .............................. ( Đề bài)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}\)\(-\frac{1}{x+3}-\frac{1}{x}=\frac{1}{2010}\)

\(\Leftrightarrow-\frac{1}{x+3}=\frac{1}{2010}\)

\(\Leftrightarrow\frac{1}{-\left(x+3\right)}=\frac{1}{2010}\)\(\Leftrightarrow-\left(x+3\right)=2010\)

\(\Leftrightarrow-x-3=2010\) \(\Leftrightarrow-x=2010+3=2013\)

\(\Leftrightarrow x=-2013\)

Bạn tự kết luận nha!

22 tháng 6 2019

c)

\(\frac{x+3}{2016}+\frac{x+2}{2017}=\frac{x+1}{2018}+\frac{x}{2019}\\ \Leftrightarrow\frac{x+3}{2016}+1+\frac{x+2}{2017}+1=\frac{x+1}{2018}+1+\frac{x}{2019}+1\\ \Leftrightarrow\frac{x+2019}{2016}+\frac{x+2019}{2017}-\frac{x+2019}{2018}-\frac{x+2019}{2019}=0\\ \Leftrightarrow\left(x+2019\right)\left(\frac{1}{2016}+\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}\right)=0\\ \Rightarrow x-2019=0\\ \Rightarrow x=2019\)

28 tháng 2 2018

\(=\frac{12}{7}\cdot\frac{3}{4}-\frac{6}{7}\cdot\frac{4}{3}+\frac{6}{7}\)

\(=\frac{6}{7}\left(\frac{3}{2}-\frac{4}{3}+1\right)\)

\(=\frac{6}{7}\left(\frac{1}{6}+1\right)=\frac{6}{7}\cdot\frac{7}{6}=1\)

2.

\(=2017\cdot2018\cdot\left[\left(2016\cdot2018\right)-\left(2016\cdot2017\right)\right]\)

\(=2017\cdot2018\cdot2016\left(2018-2017\right)=2016\cdot2017\cdot2018\)

3.

\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)....\left(\frac{1}{100}-1\right)=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot....\cdot\frac{99}{100}\)

\(=\frac{1}{100}\)

4.

\(=\frac{1+2+2^2+2^4+...+2^9}{2\left(1+2+2^2+2^3+2^4+...+2^9\right)}\)

\(=\frac{1}{2}\)

28 tháng 2 2018

mình chỉ làm được câu 3 thôi

có \(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)....\left(\frac{1}{100}-1\right)\)

\(=\frac{-1}{2}\times\frac{-2}{3}\times....\times\frac{-99}{100}\)

\(=\frac{\left(-1\right)\left(-2\right)....\left(-99\right)}{2\times3\times....\times100}\)

\(=\frac{-\left(1\times2\times....\times99\right)}{2\times3\times....\times100}\)

\(=\frac{-1}{100}\)