a)x^3+5x^2+9x=-45
b)x^3-6x^2-x+30
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d) \(4x^2-9-x\left(2x-3\right)=0\)
\(\Leftrightarrow4x^2-9-2x^2+3x=0\)
\(\Leftrightarrow2x^2+3x-9=0\)
\(\Delta=3^2-4.2.\left(-9\right)=9+72=81\)
Vậy pt có 2 nghiệm phân biệt
\(x_1=\frac{-3+\sqrt{81}}{4}=\frac{-3}{2}\);\(x_1=\frac{-3-\sqrt{81}}{4}=-3\)
e) \(x^3+5x^2+9x=-45\)
\(\Leftrightarrow x^3+5x^2+9x+45=0\)
\(\Leftrightarrow x^2\left(x+5\right)+9\left(x+5\right)=0\)
\(\Leftrightarrow\left(x^2+9\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+9=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm3i\\x=-5\end{cases}}\)
a)\(7x\left(x-2\right)=\left(x-2\right)\)
\(\Leftrightarrow7x\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(7x-1\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}7x-1=0\\x-2=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{7}\\x=2\end{matrix}\right.\)
b)\(4x^2-9-x\left(2x-3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(2x+3\right)-x\left(2x-3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(2x+3-x\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=0\\x+3=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-3\end{matrix}\right.\)
c)\(x^3+5x^2+9x=-45\)
\(\Leftrightarrow x^3+9x+5x^2+45=0\)
\(\Leftrightarrow x\left(x^2+9\right)+5\left(x^2+9\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x^2+9\right)=0\)
Dễ thấy: \(x^2+9\ge 9 >0\forall x\)
\(\Rightarrow x+5=0\Rightarrow x=-5\)
d,e tương tự
1) \(x^3+5x^2+9x=-45\)
\(\Rightarrow x^2\left(x+5\right)+9x+45=0\)
\(\Rightarrow x^2\left(x+5\right)+9\left(x+5\right)=0\)
\(\Rightarrow\left(x^2+9\right)\left(x+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2+9=0\\x+5=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x^2=-9\left(loai\right)\\x=-5\left(nhan\right)\end{cases}}\)
2) \(x^3-6x^2-x+30=0\)
\(\Rightarrow x^3-3x^2-3x^2+9x-10x+30=0\)
\(\Rightarrow x^2\left(x-3\right)-3x\left(x-3\right)-10\left(x-3\right)=0\)
\(\Rightarrow\left(x^2-3x-10\right)\left(x-3\right)=0\)
\(\Rightarrow\left(x^2-5x+2x-10\right)\left(x-3\right)=0\)
\(\Rightarrow\left[x\left(x-5\right)+2\left(x-5\right)\right]\left(x-3\right)=0\)
\(\Rightarrow\left(x+2\right)\left(x-3\right)\left(x-5\right)=0\)
\(\)Từ đây giải x giống câu trên nhé.
3) \(x^2+16=10x\)
\(\Rightarrow x^2-10x+16=0\)
\(\Rightarrow\left(x-8\right)\left(x-2\right)=0\)
Tương tự....
a) (x + 3)2 - (x - 2)2 = 2x
=> (x + 3 - x + 2)(x + 3 + x - 2) = 2x
=> 5(2x + 1) = 2x
=> 10x + 5 = 2x
=> 10x - 2x = -5
=> 8x = -5
=> x = -5/8
b) 7x(x - 2) = x - 2
=> 7x(x - 2) - (x - 2) = 0
=> (7x - 1)(x - 2) = 0
=> \(\orbr{\begin{cases}7x-1=0\\x-2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{7}\\x=2\end{cases}}\)
c) 8x3 - 12x2 + 6x - 1 = 0
=> (2x - 1)3 = 0
=> 2x - 1 = 0
=> 2x = 1
=> x = 1/2
Lời giải:
a) $8x^3-12x^2+6x-1=0$
$\Leftrightarrow (2x)^3-3(2x)^2.1+3.2x.1^2-1^3=0$
$\Leftrightarrow (2x-1)^3=0$
$\Leftrightarrow 2x-1=0\Leftrightarrow x=\frac{1}{2}$
b)
\(4x^2-9-x(2x-3)=0\)
$\Leftrightarrow (2x-3)(2x+3)-x(2x-3)=0$
$\Leftrightarrow (2x-3)(2x+3-x)=0$
$\Leftrightarrow (2x-3)(x+3)=0$
$\Rightarrow 2x-3=0$ hoặc $x+3=0$
$\Leftrightarrow x=\frac{3}{2}$ hoặc $x=-3$
c)
\(x^3+5x^2+9x=-45\)
\(\Leftrightarrow (x^3+5x^2)+(9x+45)=0\)
$\Leftrightarrow x^2(x+5)+9(x+5)=0$
$\Leftrightarrow (x+5)(x^2+9)=0$
Vì $x^2+9>0$ với mọi $x$ nên $x+5=0\Leftrightarrow x=-5$
d)
$x^3-6x^2-x+30=0$
$\Leftrightarrow x^3-3x^2-3x^2+9x-10x+30=0$
$\Leftrightarrow x^2(x-3)-3x(x-3)-10(x-3)=0$
$\Leftrightarrow (x-3)(x^2-3x-10)=0$
$\Leftrightarrow (x-3)(x^2+2x-5x-10)=0$
$\Leftrightarrow (x-3)[x(x+2)-5(x+2)]=0$
$\Leftrightarrow (x-3)(x+2)(x-5)=0$
$\Rightarrow x=3; x=-2$ hoặc $x=5$
g)
$x^2+16=10x$
$\Leftrightarrow x^2-10x+16=0$
$\Leftrightarrow x^2-10x+25-9=0$
$\Leftrightarrow (x-5)^2-3^2=0\Leftrightarrow (x-5-3)(x-5+3)=0$
$\Leftrightarrow (x-8)(x-2)=0$
$\Rightarrow x=8$ hoặc $x=2$
a) x3 - 7x + 6
= x3 - 2x2 + 2x2 - 4x - 3x + 6
= x2 ( x - 2 ) + 2x ( x - 2 ) - 3 ( x - 2 )
= ( x - 2 ) ( x2 + 2x - 3 )
= ( x - 2 ) ( x2 - x + 3x - 3 )
= ( x - 2 ) [ x ( x - 1 ) + 3 ( x - 1 ) ]
= ( x - 2 ) ( x - 1 ) ( x + 3 )
b ) x3 - 9x2 + 6x + 16
= x3 - 8x2 - x2 + 8x - 2x + 16
= x2 ( x - 8 ) - x ( x - 8 ) - 2 ( x - 8 )
= ( x - 8 ) ( x2 - x - 2 )
= ( x - 8 ) ( x2 + x - 2x - 2 )
= ( x - 8 ) [ x ( x + 1 ) - 2 ( x + 1 ) ]
= ( x - 8 ) ( x + 1 ) ( x - 2 )
c ) x3 - 6x2 - x + 30
= x3 - 5x2 - x2 + 5x - 6x + 30
= x2 ( x - 5 ) - x ( x - 5 ) - 6 ( x - 5 )
= ( x - 5 ) ( x2 - x - 6 )
= ( x - 5 ) ( x2 - 3x + 2x - 6 )
= ( x - 5 ) [ x ( x - 3 ) + 2 ( x - 3 ) ]
= ( x - 5 ) ( x - 3 ) ( x + 2 )
d ) 2x3 - x2 + 5x + 3
= 2x3 + x2 - 2x2 - x + 6x + 3
= x2 ( 2x + 1 ) - x ( 2x + 1 ) + 3 ( 2x + 1 )
= ( 2x + 1 ) ( x2 - x + 3 )
Dài 166
b) 2x2+3x-27=2x2-6x+9x-27=2x(x-3)+9(x-3)=(x-3)(2x+9)
a. x3 + 5x2 +9x + 45 = 0
<=> x2(x + 5) + 9(x + 5) = 0
<=> (x + 5)(x2 +9)=0
(x+5)= 0 hoặc (x2 + 9)=0 (vô lý)
<=> x = -5