cho x,y,z thuoc N* .Chung minh :(x/x+y)+(y/y+z)+(z/z+x)>1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xin lỗi biết làm câu 1 thôi,thông cảm
Ta có A=:
\(=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+...+\frac{100^2-1}{100^2}\)
\(=\frac{2^2}{2^2}+\frac{3^2}{3^2}+...+\frac{100^2}{100^2}-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)
\(=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)
Mà \(\left(\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{100^2}\right)< |\frac{100}{101}\)(tự tính)
\(\Rightarrow C>98\left(đpcm\right)\)
6x+11y chia hết 31 nên 6x+11y+31y chia hết 31, hay 6x+42y chia hết 31, hay 6(x+7y) chia hết 31, suy ra x+7y chia hết 31 Vì ƯC(6,31)=1
Nếu x+7y chia hết 31 suy ra 6(x+7y) chia hết 31, hay 6x+42y chia hết 31, suy ra 6x+11y+31y chia hết 31, suy ra 6x+11y chia hết 31
Ta có :
\(\left(x+y\right)\left(x+z\right)+\left(y+z\right)+\left(y+x\right)\)
\(=x^2+xz+xy+yz+y^2+xy+zy+xz\)
\(=x^2+y^2+2\left(xy+yz+zx\right)\)
\(2\left(x+z\right)\left(z+y\right)\)
\(=2\left(xz+z^2+xy+zy\right)\)
\(=2z^2+2\left(xy+yz+zx\right)\)
\(\Rightarrow x^2+y^2+2\left(xy+yz+zx\right)=2z^2+2\left(xy+yz+zx\right)\)
\(\Rightarrow x^2+y^2=2z^2\)
\(\Rightarrow z^2=\frac{x^2+y^2}{2}\)
Ta có :
\(\left(x+y\right)\left(x+z\right)+\left(y+z\right)\left(y+x\right)\)
\(=x^2+xz+xy+yz+y^2+xy+zy+xz\)
\(=x^2+y^2+2\left(xz+xy+yz\right)\)
\(2\left(x+z\right)\left(z+y\right)\)
\(=2\left(xz+z^2+xy+zy\right)\)
\(=2z^2+2\left(xz+xy+yz\right)\)
\(\Rightarrow x^2+y^2+2\left(xz+xy+yz\right)=2z^2+2\left(xz+xy+yz\right)\)
\(\Rightarrow x^2+y^2=2z^2\)
\(\Rightarrow z^2=\frac{x^2+y^2}{2}\)
Vây ...
\(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=1\)