K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2015

\(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=1\)

29 tháng 4 2018

Cau 2.la z/ x +z chu k phai x / x+z nha mk nham

29 tháng 4 2018

Xin lỗi biết làm câu 1 thôi,thông cảm

Ta có A=:

\(=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+...+\frac{100^2-1}{100^2}\)

\(=\frac{2^2}{2^2}+\frac{3^2}{3^2}+...+\frac{100^2}{100^2}-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)

\(=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)

Mà \(\left(\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{100^2}\right)< |\frac{100}{101}\)(tự tính)

\(\Rightarrow C>98\left(đpcm\right)\)

8 tháng 11 2017

Áp dụng BĐT Cô-si cho 2 số dương, ta có:

\(18x+\frac{2}{x}\ge2\sqrt{18x.\frac{2}{x}}=12\)

Chứng minh tương tự, ta có

\(18y+\frac{2}{y}\ge12\)

\(18z+\frac{2}{z}\ge12\)

Từ đó suy ra \(18\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge36\)(*)

Lại có \(x+y+z\le1\Rightarrow-\left(x+y+z\right)\ge-1\)(**)

Từ (*) và (**) suy ra \(18\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-\left(x+y+z\right)\ge36-1\)

                           \(\Leftrightarrow17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge35\)

Vậy \(17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge35\)với \(x+y+z\le1\)

28 tháng 1 2016

6x+11y chia hết 31 nên 6x+11y+31y chia hết 31, hay 6x+42y chia hết 31, hay 6(x+7y) chia hết 31, suy ra x+7y chia hết 31 Vì ƯC(6,31)=1

Nếu x+7y chia hết 31 suy ra 6(x+7y) chia hết 31, hay 6x+42y chia hết 31, suy ra 6x+11y+31y chia hết 31, suy ra 6x+11y chia hết 31

28 tháng 1 2016

kho

20 tháng 8 2018

giả su x =a/m , y = b/m (a,b thuoc z, m >0) va x <y. hay chung to rang neu chon z=a+b/2m thi ta co x<z <y 

giai gium minh voi. bạn viết dấu giùm mik nhé

4 tháng 9 2016

Đặt \(P=x^4\left(y-z\right)+y^4\left(z-x\right)+z^4\left(x-y\right)\)
\(P=x^4\left(y-z\right)+y^4\left(z-x\right)+z^4\left(x-y\right)\)

\(=x^4\left(y-z\right)+y^4z-y^4x+z^4x-z^4y\)

\(=x^4\left(y-z\right)+y^4z-z^4y-y^4x+z^4x\)

\(=x^4\left(y-z\right)+yz\left(y^3-z^3\right)-x\left(y^4-z^4\right)\)

\(=x^4\left(y-z\right)+yz\left(y-z\right)\left(y^2+yz+z^2\right)-x\left(y-z\right)\left(y^3+y^2z+yz^2+z^3\right)\)

\(=\left(y-z\right)\left[x^4+yz\left(y^2+yz+z^2\right)-x\left(y^3+y^2z+yz^2+z^3\right)\right]\)

\(=\left(y-z\right)\left(x^4+y^3z+y^2z^2+yz^3-xy^3-xy^2z-xyz^2-xz^3\right)\)

\(=\left(y-z\right)\left(x^4-xz^3-xy^3+y^3z-xy^2z+y^2z^2-xyz^2+yz^3\right)\)

\(=\left(y-z\right)\left[x\left(x^3-z^3\right)-y^3\left(x-z\right)-y^2z\left(x-z\right)-yz^2\left(x-z\right)\right]\)

\(=\left(y-z\right)\left[x\left(x-z\right)\left(x^2+xz+z^2\right)-y^3\left(x-z\right)-y^2z\left(x-z\right)-yz^2\left(x-z\right)\right]\)

\(=\left(y-z\right)\left(x-z\right)\left[x\left(x^2+xz+z^2\right)-y^3-y^2z-yz^2\right]\)

\(=\left(y-z\right)\left(x-z\right)\left(x^3+x^2z+xz^2-y^3-y^2z-yz^2\right)\)

\(=\left(y-z\right)\left(x-z\right)\left(x^3-y^3+x^2z-y^2z+xz^2-yz^2\right)\)

\(=\left(y-z\right)\left(x-z\right)\left[\left(x-y\right)\left(x^2+xy+y^2\right)+z\left(x^2-y^2\right)+z^2\left(x-y\right)\right]\)

\(=\left(y-z\right)\left(x-z\right)\left[\left(x-y\right)\left(x^2+xy+y^2\right)+z\left(x-y\right)\left(x+y\right)+z^2\left(x-y\right)\right]\)

\(=\left(y-z\right)\left(x-z\right)\left(x-y\right)\left[x^2+xy+y^2+z\left(x+y\right)+z^2\right]\)

\(=\left(y-z\right)\left(x-z\right)\left(x-y\right)\left(x^2+xy+y^2+xz+yz+z^2\right)\)

Đặt \(A=x^2+xy+y^2+xz+yz+z^2\)

\(A=\frac{2\left(x^2+xy+y^2+xz+yz+z^2\right)}{2}=\frac{2x^2+2xy+2y^2+2xz+2yz+2z^2}{2}\)

\(=\frac{\left(x^2+2xy+y^2\right)+\left(y^2+2yz+z^2\right)+\left(x^2+2xz+z^2\right)}{2}\)

\(=\frac{\left(x+y\right)^2+\left(y+z\right)^2+\left(x+z\right)^2}{2}\)

=>\(P=\left(y-z\right)\left(x-z\right)\left(x-y\right).\frac{\left(x+y\right)^2+\left(y+z\right)^2+\left(x+z\right)^2}{2}\)

Ta có: \(x>y>z< =>\hept{\begin{cases}x>y\\y>z\\x>z\end{cases}}< =>\hept{\begin{cases}x-y>0\\y-z>0\\x-z>0\end{cases}}\)

Dễ thấy \(\left(x+y\right)^2\ge0;\left(y+z\right)^2\ge0;\left(x+z\right)^2\ge0\) với mọi x;y;z

\(=>P>0\) (đpcm)