cho A = 3 + 3^2 + 3^3 + ... + 3^2017.
a, Tinh A
b, Tim x de 2A + 3 = 3^x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,A=1+3+3^2+...+3^{125}\\ \Rightarrow3A=3+3^2+3^3+...+3^{126}\\ \Rightarrow2A=3^{126}-1\\ \Rightarrow A=\dfrac{3^{126}-1}{2}\\ c,2A=3^{2x}-1\\ \Rightarrow3^{126}-1=3^x-1\\ \Rightarrow x=126\)
\(d,A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{124}+3^{125}\right)\\ A=\left(1+3\right)+3^2\left(1+3\right)+...+3^{124}\left(1+3\right)\\ A=\left(1+3\right)\left(1+3^2+...+3^{124}\right)\\ A=4\left(1+3^2+...+3^{124}\right)⋮4\)
a, 3A=3^2+3^3+....+3^2007
2A=3A-A=(3^2+3^3+....+3^2007)-(3+3^2+...+3^2006) = 3^2007-3
A=(3^2007-3)/2
b, Hình như sai đề
k mk nha
\(a,A=\dfrac{5-3}{5+2}=\dfrac{2}{7}\\ b,B=\dfrac{3x-9+2x+6-3x+9}{\left(x-3\right)\left(x+3\right)}=\dfrac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{2}{x-3}\\ c,C=AB=\dfrac{x-3}{x+2}\cdot\dfrac{2}{x-3}=\dfrac{2}{x+2}\\ C=-\dfrac{1}{3}\Leftrightarrow x+2=-6\Leftrightarrow x=-8\left(tm\right)\)
\(A=3+3^2+...+3^{2008}\)
\(3A=3.\left(3+3^2+...+3^{2008}\right)\)
\(3A-A=\left(3^2+3^3+...+3^{2009}\right)-\left(3+3^2+...+3^{2008}\right)\)
\(2A=3^{2009}-3\)
\(2A+3=3^{2009}-3+3\)
\(2A+3=3^{2009}\)
Vì \(2A+3=3^x\)hay \(3^{2009}=3^x\)
\(\Rightarrow x=2009\)
a) với a = -2 ta được phương trình:
3.[(-2) - 2].x + 2.(-2).(x - 1) = 4.(-2) + 3
<=> 3.(-4x) - 4.(x - 1) = (-8) + 3
<=> -12x - 4(x - 1) = -5
<=> -12x - 4x + 4 = -5
<=> -16x + 4 = -5
<=> -16x = -5 - 4
<=> -16x = -9
<=> x = 9/16
b) để x = 1, ta có:
3.(a - 2).1 + 2a(1 - 1) = 4a + 3
<=> 3(a - 2) + 0 = 4a + 3
<=> 3a - 6 = 4a + 3
<=> 3a - 6 - 4a = 3
<=> -a - 6 = 3
<=> -a = 3 + 6
<=> a = -9
Ta có : A = 5 + 32 + 33 + ... + 32018
<=> A = 1 + 1 + 3 + 32 + 33 + ... + 32018
=> 3A = 3 + 3 + 32 + 33 + 34 + ... + 32019
Lấy 3A trừ A ta có :
3A - A = (3 + 3 + 32 + 33 + 34 + ... + 32018 + 32019 ) - (1 + 1 + 3 + 32 + 33 + ... + 32018)
2A = 32019 + 3 - 2
2A = 32019 + 1
2A - 1 = 32019
<=> 3n = 32019
=> n = 2019
Vậy n = 2019
a)Nhân cả 2 vế với 3,ta có:
3.A=3.(3+3^2+3^3+...+3^2017
3.A=3.3+3.3^2+3.3^3+...+3.3^2017
3.A=3^2+3^3+3^4+...+3^2018
3.A-A=(3^2+3^3+3^4+...+3^2018)-(3+3^2+3^3+...+3^2017)
2.A=3^2018-3
b)Có:3^2018+3-3=3^x
3^2018=3^x
Suy ra x=2018
Chúc học tốt