cho ∆ abc có hai đường cao bd và ce cắt nhau tại h . gọi M là trung điểm của ED và N là trung điểm của BC chứng minh rằng a, ∆HEB~∆HBC. b, AB.AE=AC AD từ đó suy ra góc AED = góc ACB. c, MN vuông góc với ED
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
28 tháng 4 2021
a) Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC(ΔABC cân tại A)
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE(cạnh huyền-góc nhọn)
Suy ra: BD=CE(hai cạnh tương ứng)
28 tháng 4 2021
b) Ta có: ΔABD=ΔACE(cmt)
nên AD=AE(Hai cạnh tương ứng)
Xét ΔADE có AD=AE(cmt)
nên ΔADE cân tại A(Định nghĩa tam giác cân)
26 tháng 7 2021
a) Xét ΔADB vuông tại D và ΔAEC vuông tại E có
\(\widehat{EAC}\) chung
Do đó: ΔADB\(\sim\)ΔAEC(g-g)
Suy ra: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
Xét ΔADE và ΔABC có
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)(cmt)
\(\widehat{A}\) chung
Do đó: ΔADE\(\sim\)ΔABC(c-g-c)
a: Xét ΔHEB vuông tại E và ΔHDC vuông tại D có
\(\widehat{EHB}=\widehat{DHC}\)(hai góc đối đỉnh)
Do đó: ΔHEB~ΔHDC
b: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
\(\widehat{DAB}\) chung
Do đó: ΔADB~ΔAEC
=>\(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)
=>\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
=>\(AD\cdot AC=AB\cdot AE\)
Xét ΔADE và ΔABC có
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
\(\widehat{DAE}\) chung
Do đó: ΔADE~ΔABC
=>\(\widehat{AED}=\widehat{ACB}\)
c: Ta có: ΔEBC vuông tại E
mà EN là đường trung tuyến
nên \(NE=\dfrac{BC}{2}\left(1\right)\)
ΔDBC vuông tại D
mà DN là đường trung tuyến
nên \(DN=\dfrac{BC}{2}\left(2\right)\)
Từ (1),(2) suy ra ND=NE
=>ΔNDE cân tại N
ΔNDE cân tại N
mà NM là đường trung tuyến
nên NM\(\perp\)DE