K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2017

Ta có : abcdeg = 10000 . ab + 100 . cd + eg . 1

= 9999 . ab + 99 . cd + ab + cd + eg

= ( 9999 . ab + 99 . cd ) + ( ab + cd + eg )

+) 9999 . ab + 99 . cd chia hết cho 11 vì :

Ta xét chữ số tận cùng 9999 và 99 là chữ số 9 còn số 11 có chữ số 1

Ta lấy : 9 : 1 = 9 từ điều đó suy ra 9999 . ab + 99 . cd  chia hết cho 11

+) ab + cd + eg cũng chia hết cho 11

Vậy abcdeg chia hết cho 11

15 tháng 10 2017

nghĩ chưa mà hỏi

a. Vì abcdeg chia hết cho 11 ( giả thiết b ) => abcdeg chia hết cho 11

b. Vì ab+cd+eg chia hết cho 11 ( giả thiết đầu bài ) => ab+cd+eg chia hết cho 11

2 tháng 4 2017

Ta có

abcdeg = ab.10000+cd.100+eg

              =9999.ab​​+ab+99.cd+cd+eg

              =(9999.ab+99.cd)+(ab+cd+eg)

Vì 9999.ab+99.cd chia hết cho 11, ab+cd+eg chia hết cho 11vậy ababcdeg chia hết cho 11

1 tháng 3 2018

Ta có : abcdeg = ab10000 + cd100 + eg 

= ( ab + cd + eg) + ( ab9999 + cd99 + eg)

= (ab + cd + eg ) + 11( ab909 + cd9 +eg ) chia hết cho 11

=> abcdeg chia hết cho 11

8 tháng 12 2015

​​Ta có : abcdeg=10000.ab +100.cd+eg

                       =9999.ab+ab+99.cd+eg

                       =(9999.ab+99.cd)+(ab+cd+eg)

Vì 9999.ab chia hết cho 11 ; 99.cd chia hết cho 11 => 9999.ab+99.cd chia hết cho 11

Mà ab+cd+eg chia hết cho 11

=>(9999.ab+99.cd)+(ab+cd+eg) chia hết cho 11

hay abcdeg chia hết cho 11

Vậy abcdeg chia hết cho 11


19 tháng 4 2021

Ta có: abcdeg=10000ab+100+cd+eg

                      =(ab+cd+eg)(10000+101)

                              theo bài ra ta có ab+cd+eg chia hết cho 11=>(ab+cd+eg)(10000+101) chia hết cho 11 hay abcdeg chia hết cho 11(đpcm) 

                   Vậy với ab+cd+eg chia hết cho 11 thì abcdeg cũng chia hết cho 11

                           

24 tháng 10 2018

abcdeg=ab.10000+cd.100+eg=ab+ab.9999+cd+cd.99+eg=(ab+cd+Eg)+ab.9999+cd.99 

Vì \(\overline{cd}.99\)chia hết cho 11

\(\overline{ab}.9999\)chia hết cho 11

\(\overline{ab}+\overline{cd}+\overline{eg}\)không chia hết cho 11

Vậy nên \(\overline{abcdeg}\)không chia hết cho 11

abcdeg = ab . 10000 + cd . 100 + eg

ab . 9999 + 1 . ab + cd . 99 + cd + eg 

ab . 11 . 909 + cd . 11 . 9 + ( ab + cd + eg )

= 11 . ( ab + 909 + cd . 9 ) + ( ab + cd + eg )

Vì 11 . ( ab . 909 + cd . 9 ) chia hết cho 11

            ab + cd + eg chia hết cho 11

Nên abcdeg chia hết cho 11

Vậy nếu ab + cd + eg chia hết cho 11 thì abcdeg cũng chia hết cho 11

5 tháng 1 2017

dấu hiệu chia hết cho 11: một số chia hết cho 11 khi và chỉ khi :tổng các chữ số hàng chẵn-tổng các chữ số hàng lẻ chia hết cho 11

theo giả thiết:/ab+/cd+/eg = 10a + b + 10c + d + 10e + g = 11(a+c+e) + (b+d+g) - (a+c+e) chia hết cho 11

suy ra: (b+d+g) - (a+c+e) chia hết cho 11

suy ra : /abcdeg chia hết cho 11

19 tháng 7 2015

 abcdeg = 10000.ab + 100.cd + eg = 9999.ab + 99.cd + (ab + cd + eg)

Vì 9999.ab chia hết cho 11, 99.cd chia hết cho 11 và ab + cd + eg chia hết cho 11

=> abcdeg chia hết cho 11 (đpcm)

11 tháng 1 2018

ab+cd+eg chia hết cho 11

Mà 9999ab = 99.11.ab chia hết cho 11 và 99cd = 9.11.cd chia hết cho 11

=> 9999ab+99cd+ab+cd+eg chia hết cho 11

=> 10000ab+100cd+eg chia hết cho 11

=> ab0000+cd00+eg chia hết cho 11

=> abcdeg chia hết cho 11

=> ĐPCM

Tk mk nha

11 tháng 1 2018

Ta có: \(\overline{abcdeg}=10000\overline{ab}+100\overline{cd}+\overline{eg}=9999\overline{ab}+99\overline{cd}+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)

Mà \(999\overline{ab}⋮11;99\overline{cd}⋮11;\left(\overline{ab}+\overline{cd}+\overline{eg}\right)⋮11\)

\(\Rightarrow9999\overline{ab}+99\overline{cd}+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)⋮11\)

Vậy...

AH
Akai Haruma
Giáo viên
29 tháng 2 2024

Lời giải:

$\overline{abcdeg}=\overline{ab}\times 10000+\overline{cd}\times 100+\overline{eg}$

$=(\overline{ab}+\overline{cd}+\overline{eg})+9999\overline{ab}+99\overline{cd}$

$=(\overline{ab}+\overline{cd}+\overline{eg})+11(909\overline{ab}+9\overline{cd})\vdots 11$ do:

$(\overline{ab}+\overline{cd}+\overline{eg})\vdots 11$ và $11(909\overline{ab}+9\overline{cd})\vdots 11$