3/4x7+3/7x10+3/10x13+...+6/87/90
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=1/1-1/4+1/4-1/7+1/7-1/10+1/10-1/13+1/13-1/16
=1-1/16=15/16
3/(1×4)+3/(4×7)+3/(7×10)+3/(10×13)+3/(13×16)
=1-1/4+1/4-1/7+1/7-1/10+1/10-1/13+1/13-1/16
=1-1/16
=15/16
31 x 434 x 737 x 10310 x 13 = 1.3289876e+12
mik phải dùng máy tính chứ có sịp nhân mới trả lời đc
nhỉ ?????
E= 7/4x7 + 7/7x10 =7/10x13+...+ 7/301x304
\(=\frac{7}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{301}-\frac{1}{304}\right)\)
\(=\frac{7}{3}\left(\frac{1}{4}-\frac{1}{304}\right)\)
\(=\frac{7}{3}\cdot\frac{75}{304}\)
\(=\frac{175}{304}\)
E = \(\frac{7}{4.7}+\frac{7}{7.10}+\frac{7}{10.13}+...+\frac{7}{301.304}\)
=\(\frac{7}{3}.\frac{7-4}{4.7}+\frac{7}{3}.\frac{10-7}{7.10}+\frac{7}{3}.\frac{13-10}{10.13}+...+\frac{7}{3}.\frac{304-301}{301.304}\)
= \(\frac{7}{3}.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{301}-\frac{1}{304}\right)\)=\(\frac{7}{3}.\left(\frac{1}{4}-\frac{1}{304}\right)=\frac{7}{3}.\frac{75}{304}=\frac{175}{304}\)
Ta có : \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+\frac{3}{13.16}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.......+\frac{1}{13}-\frac{1}{16}\)
\(=1-\frac{1}{16}\)
\(=\frac{15}{16}\)
\(C=\dfrac{1}{4.7}+\dfrac{1}{7.10}+\dfrac{1}{10.13}+...+\dfrac{1}{2020+2023}\)
\(=\dfrac{1}{3}\left(\dfrac{3}{4.7}+\dfrac{3}{7.10}+\dfrac{3}{10.13}+...+\dfrac{3}{2020.2023}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+...+\dfrac{1}{2020}-\dfrac{1}{2023}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{4}-\dfrac{1}{2023}\right)\)
\(=\dfrac{1}{3}.\dfrac{2019}{8092}\)
\(=\dfrac{673}{8092}\)
1/1.4+1/4.7+1/7.10+1/10.13+1/13.16
=1/3.(3/1.4+3/4.7+3/7.10+3/10.13+3/13.16)
=1/3.(1/1-1/4+1/4-1/7+1/7-1/10+1/10-1/13+1/13-1/16)
=1/3.(1/1-1/16)
=1/3.(16/16-1/16)=1/3.15/16=5/16
Ta có:
A = \(\frac{5}{4.7}+\frac{5}{7.10}+\frac{5}{10.13}+...+\frac{5}{301.304}\)
A = 5. (\(\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+...+\frac{1}{301.304}\))
3A = 3.5. (\(\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+...+\frac{1}{301.304}\))
3A = 5. (\(\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{301.304}\))
3A = 5. ( \(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-...-\frac{1}{301}+\frac{1}{301}-\frac{1}{304}\))
3A = 5. ( \(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-...-\frac{1}{301}+\frac{1}{301}-\frac{1}{304}\))
3A = 5. ( \(\frac{1}{4}-\frac{1}{304}\))
3A = \(\frac{5.75}{304}\)
3A = \(\frac{375}{304}\)
A= \(\frac{125}{304}\) . Vậy: A = \(\frac{125}{304}\)
Chúc bạn học tốt! Tick cho mình nhé!
\(\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+\dfrac{3}{10\cdot13}+...+\dfrac{3}{87\cdot90}\)
\(=\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{87}-\dfrac{1}{90}\)
\(=\dfrac{1}{4}+\left(\dfrac{1}{7}-\dfrac{1}{7}\right)+\left(\dfrac{1}{10}-\dfrac{1}{10}\right)+...+\left(\dfrac{1}{87}-\dfrac{1}{87}\right)-\dfrac{1}{90}\)
\(=\dfrac{1}{4}-\dfrac{1}{90}\)
\(=\dfrac{45}{180}-\dfrac{2}{180}\)
\(=\dfrac{43}{180}\)
Em xem lại phân số cuối nhé, em viết sai rồi