Thực hiện các yêu cầu sau
a)Tính A - B biết
A = 1+4+9+16+25+36+...+9801+10000
B = 1+8+27+64+125+216+343+512+729+1000
b)Chứng minh A không phải là số tự nhiên biết A = 1/2^2 + 1/3^2 + 1/4^2 + ... + 1/100^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Viết các số sau thành bình phương của 1 số tự nhiên:
1; 4; 9; 16; 25; 36; 49; 64; 81; 100; 121.
1^2; 2^2; 3^2; 4^2; 5^2; 6^2; 7^2; 8^2; 9^2; 10^2; 11^2
Viết mỗi số sau thành lập phương của 1 số tự nhiên:
27; 64; 125; 216; 343
3^3; 4^3; 5^3; 6^3; 7^3
Viết kết quả của phép tính sau dưới dạng 1 lũy thừa:
a,3 mũ 3.3 mũ 4 = 3 ^7
b, 5 mũ 2.5 mũ 9= 5^11
c, 7 mũ 6.7 mũ 3 = 7^9
1: 8=2^3
2: 25=5^2
3: 4=2^2
4: 49=7^2
5: 81=9^2
6: 36=6^2
7: 100=10^2
8: 121=11^2
9: 144=12^2
10: 169=13^2
11: 27=3^3
12: 125=5^3
13: 1000=10^3
14: 32=2^5
15: 243=3^5
16: 343=7^3
17: 216=6^3
18: 64=4^3
19: 225=15^2
20: 128=2^7
a) = \(\frac{127}{96}\)
b) = \(\frac{255}{256}\)
c) Mik bỏ nha
d) = \(\frac{1023}{512}\)
e) = \(\frac{2343}{625}\)
a: x^3=7^3
=>x^3=343
=>\(x=\sqrt[3]{343}=7\)
b: x^3=27
=>x^3=3^3
=>x=3
c: x^3=125
=>x^3=5^3
=>x=5
d: (x+1)^3=125
=>x+1=5
=>x=4
e: (x-2)^3=2^3
=>x-2=2
=>x=4
f: (x-2)^3=8
=>x-2=2
=>x=4
h: (x+2)^2=64
=>x+2=8 hoặc x+2=-8
=>x=6 hoặc x=-10
j: =>x-3=2 hoặc x-3=-2
=>x=1 hoặc x=5
k:
9x^2=36
=>x^2=36/9
=>x^2=4
=>x=2 hoặc x=-2
l:
(x-1)^4=16
=>(x-1)^2=4(nhận) hoặc (x-1)^2=-4(loại)
=>x-1=2 hoặc x-1=-2
=>x=3 hoặc x=-1
Bởi vì chúng đều là phân số.
Kể từ số thứ hai trở đi,phân số lại bé thêm (...) phần nữa.
a. Phân số cuối cùng là phân số duy nhất có mẫu chứa thừa số 2 vối số mũ cao nhất là 2^2. Khi đồng mẫu ,mẫu chung là một số chia hết cho 2^2, các thừa số phụ đều chia hết cho 2 trừ thừa số phụ của phân số cuối cùng do đó tổng các chữ số mới ko chia hết cho2 trong khi đó mẫu số là một số chia hết cho 2 suy ra A ko phải số tự nhiên b và c làm như thế nha
b: \(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}=1-\dfrac{1}{2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)
...
\(\dfrac{1}{100^2}< \dfrac{1}{99}-\dfrac{1}{100}\)
Do đó: \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
=>\(A< 1-\dfrac{1}{100}\)
=>A<1
=>0<A<1
=>A không là số tự nhiên
a: \(A=1+4+9+...+10000\)
\(=1^2+2^2+...+100^2\)
\(=\dfrac{100\left(100+1\right)\left(2\cdot100+1\right)}{6}\)
\(=\dfrac{100\cdot101\cdot201}{6}\)
\(B=1+8+27+...+1000\)
\(=1^3+2^3+...+10^3=\left(1+2+...+10\right)^2\)
\(=55^2\)
=>\(A-B=\dfrac{100\cdot101\cdot201}{6}-55^2=335325\)