cho x+y=17 và x.y=12 tính A=x2+y2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x-y=-30\Rightarrow\dfrac{x}{-30}=\dfrac{1}{y}\\ y.z=-42\\ \Rightarrow\dfrac{z}{-42}=\dfrac{1}{y}\\ \Rightarrow\dfrac{x}{-30}=\dfrac{z}{-42}\)
Áp dụng TCDTSBN ta có:
\(\dfrac{x}{-30}=\dfrac{z}{-42}=\dfrac{z-x}{-42-\left(-30\right)}=\dfrac{-12}{-12}=1\)
\(\dfrac{x}{-30}=1\Rightarrow x=-30\\ \dfrac{z}{-42}=1\Rightarrow z=-42\)
\(x.y=-30\Rightarrow-30.y=-30\Rightarrow y=1\)
x và y đại lượng tỉ lệ nghịch
x1x2x1x2=y2y1y2y1hay x1 và x2 ta có:
2323=y2y1y2y1⇒y13y13=y22y22
Mà y122+y222=52
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
y13y13=y22y22=y12+y2232+22y12+y2232+22=52135213=4
⇒y13y13=4⇒y1=12
⇒y22y22=4⇒y2=8
a: \(=\left(x-y\right)\left(x+y\right)\)
\(=74\cdot100=7400\)
c: \(=\left(x+2\right)^3\)
\(=10^3=1000\)
a) \(=\left(x-y\right)\left(x+y\right)\)
Thay \(x=87;y=13\) ta đc: \(\left(87-13\right)\left(87+13\right)=74\cdot100=7400\)
b)\(=\left(x-y\right)\left(x^2+xy+y^2\right)=x^3-y^3\)
Thay \(x=10;y=-1\) ta đc:
\(10^3-\left(-1\right)^3=1000-1=999\)
c)\(=\left(x+2\right)^3\)
Thay \(x=8\) ta đc: \(\left(8+2\right)^3=10^3=1000\)
d)\(=x^2-8x+16+1=\left(x-4\right)^2+1\)
Thay \(x=104\) ta đc: \(\left(104-4\right)^2+1=100^2+1=10001\)
Lời giải:
Vì $x,y$ tỉ lệ nghịch nên tích $xy$ không đổi
a.
Ta có:
$x_2y_2=x_1y_1=-45$
$\Rightarrow y_2=\frac{-45}{x_2}=\frac{-45}{9}=-5$
b.
$x_1y_1=x_2y_2$
$2y_1=4y_2$
$y_1=2y_2$. Thay vô $y_1+y_2=-12$ thì:
$2y_2+y_2=-12$
$3y_2=-12$
$y_2=-4$
$y_1=2y_2=2(-4)=-8$
c.
$x_1y_1=x_2y_2$
$12x_1=3y_2$
$4x_1=y_2$
Thay vô $x_1+2y_2=18$ thì:
$x_1+2.4x_1=18$
$9x_1=18$
$x_1=2$
$y_2=4x_1=4.2=8$
\(A=x^2+y^2=\left(x+y\right)^2-2xy\)
Thay \(x+y=17,xy=12\)vào ta có
\(17^2-2.12=265\)