(2x-1)^6 = (2x-1)^8
cứu tui với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^{2x+1}-4^x=16^x\)
\(\Leftrightarrow2^{2x}.2-4^x=\left(4^2\right)^x\)
\(\Leftrightarrow4^x.2-4^x=4^{2x}\)
\(\Leftrightarrow4^x=4^{2x}\)
\(\Leftrightarrow x=2x\)
\(\Leftrightarrow x=0\)
22x+1−4x=16x
\Leftrightarrow2^{2x}.2-4^x=\left(4^2\right)^x⇔22x.2−4x=(42)x
\Leftrightarrow4^x.2-4^x=4^{2x}⇔4x.2−4x=42x
\Leftrightarrow4^x=4^{2x}⇔4x=42x
\Leftrightarrow x=2x⇔x=2x
\Leftrightarrow x=0⇔x=0
\(a,-\dfrac{4}{7}-x=\dfrac{3}{5}-2x\\ \Leftrightarrow x=\dfrac{41}{35}\)
\(b,\dfrac{5}{7}-\dfrac{1}{13}+\dfrac{1}{4}=\dfrac{31}{2}-x\\ \Leftrightarrow x=\dfrac{5319}{364}\)
4. ( x - 250 ) : 6 = 64 - 12
( x- 250 ) : 6 = 52
x - 250 = 312
x = 562
5. 10x = 1030
=> x = 103
6. 30x = 120
x = 4
7. \(x=2023\)
\(8.165-\left(35:x+3\right).19=13\)
\(\left(35:x+3\right).19=152\)
\(35:x+3=8\)
\(35:x=5\)
\(x=7\)
4) \(\left(x-250\right)\div6=4^3-2^2\times3\)
\(\left(x-250\right)\div6=64-4\times3\)
\(\left(x-250\right)\div6=64-12=52\)
\(x-250=52\times6=312\)
\(x=312+250\)
\(x=562\)
5) \(2x+3x+5x=1030\)
\(x\left(2+3+5\right)=1030\)
\(10x=1030\)
\(x=1030\div10\)
\(x=103\)
6) \(15x-35x+50x=120\)
\(x\left(15-35+50\right)=120\)
\(30x=120\)
\(x=120\div30\)
\(x=4\)
7) \(\dfrac{1}{2}x+\dfrac{1}{6}x+\dfrac{1}{3}x=2023\)
\(x\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{6}\right)=2023\)
\(x\times1=2023\)
\(x=2023\)
8) \(165-\left(35\div x+3\right)\times19=13\)
\(\left(35\div x+3\right)\times19=165-13\)
\(\left(35\div x+3\right)\times19=152\)
\(35\div x+3=152\div19=8\)
\(35\div x=8-3=5\)
\(x=35\div5\)
\(x=7\)
\(\left(2x+1\right)^4=\left(2x+1\right)^6\)
Đặt 2x + 1 = a, ta có
\(a^4=a^6\)
\(\Rightarrow a^4-a^6=0\)
\(\Rightarrow a^4\left(1-a^2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a^4=0\\1-a^2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}a=0\\a^2=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}a=0\\a=1\\a=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x+1=0\\2x+1=1\\2x+1=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=-1\\2x=0\\2x=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=0\\x=-1\end{matrix}\right.\)
\(\left(2x+1\right)^4=\left(2x+1\right)^6\)
\(\Rightarrow\left(2x+1\right)^4-\left(2x+1\right)^6=0\)
\(\Rightarrow\left(2x+1\right)^4.\left[\left(2x+1\right)^2-1\right]0\)
\(\Rightarrow\left[{}\begin{matrix}\left(2x+1\right)^4=0\\\left[\left(2x+1\right)^2-1\right]=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x+1=0\\\left(2x+1\right)^2=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=0\end{matrix}\right.\)
\(\Rightarrow\left\{x_1=\dfrac{-1}{2};x_2=0\right\}\)
\(\left\{{}\begin{matrix}3x+y=8\left(1\right)\\2x-3y=1\left(2\right)\end{matrix}\right.\)
Từ (1) \(3x+y=8\Rightarrow y=8-3x\) (3)
Thế (3) vào (2):
\(2x-3\left(8-3x\right)=1\)
\(\Leftrightarrow11x=25\)
\(\Rightarrow x=\dfrac{25}{11}\)
Thế x vào (3) \(\Rightarrow y=8-\dfrac{3.25}{11}=\dfrac{13}{11}\)
Vậy nghiệm của hệ là \(\left(x;y\right)=\left(\dfrac{25}{11};\dfrac{13}{11}\right)\)
(2x-5)2+2(2x-5)(3x+1)+(3x+1)2
=(2x-5)[(2x-5)+2(3x+1)]+(3x+1)2
=(2x-5)[8x-3]+(3x+1)2
=16x2-46x+15+9x2+6x+1
=25x2-40x+16
=(5x)2-2*5x*4+42
=(5x-4)2
phần nâng cao chính là một hằng đẳng thức hoàn chỉnh (a+b)2. trong đó 2x-5 là a và 3x+1 là b
Lời giải:
$x^2-y+2x-xy=y-3$
$\Rightarrow (x^2+2x)-(2y+xy)=-3$
$\Rightarrow x(x+2)-y(x+2)=-3$
$\Rightarrow (x+2)(x-y)=-3$
Do $x,y$ là số nguyên nên $x+2, x-y$ nguyên. Do đó ta có các TH sau:
TH1: $x+2=1; x-y=-3\Rightarrow x=-1; y=2$
TH2: $x+2=-1; x-y=3\Rightarrow x=-3; y=6$
TH3: $x+2=3; x-y=-1\Rightarrow x=1; y=2$
TH4: $x+2=-3; x-y=1\Rightarrow x=-5; y=-6$
Lời giải:
Đặt $2x-1=a$
\(a^6=a^8\\ \Leftrightarrow a^8-a^6=0\\ \Leftrightarrow a^6(a^2-1)=0\\ \Leftrightarrow a^6=0\text{ hoặc } a^2-1=0\\ \Leftrightarrow a=0 \text{ hoặc } a=\pm 1\\ \Leftrightarrow 2x-1=0 \text{ hoặc } 2x-1=1 \text{ hoặc } 2x-1=-1\)
$\Leftrightarrow x=\frac{1}{2}$ hoặc $x=1$ hoặc $x=0$
Nhận xét: Mũ chẵn và chung cơ số
⇒ Cơ số ϵ { -1; 1; 0}
Ta lập bảng:
⇒ x ϵ {0; 1}