Chứng minh rằng với mọi n thuộc N ta có: A= ( 17n -1) . ( 17n+1) chia hết cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(A=17n+\underbrace{11....1}_{n}=18n+1\underbrace{00...0}_{n-1}+1\underbrace{00...0}_{n-2}+1\underbrace{00...0}_{n-3}+....+10+1-n\)
\(=18n+(1\underbrace{00...0}_{n-1}-1)+(1\underbrace{00...0}_{n-2}-1)+.....+(10-1)+(1-1)\)
\(=18n+\underbrace{99...9}_{n-1}+\underbrace{99...9}_{n-2}+....+9\vdots 9\) do các số hạng đều chia hết cho 9.
17n+11...1(n chữ số 1)=18n-n+111..1(n chữ số 1)=18n+(111...1 - n) chia hết cho 9
a) Gọi 3 số tự nhiên liên tiếp là x,x+1,x+2(x∈N)x,x+1,x+2(x∈N)
- Nếu x=3kx=3k ( thỏa mãn ). Nếu x=3k+1x=3k+1 thì x+2=3k+1+2=(3k+3)⋮3x+2=3k+1+2=(3k+3)⋮3
- Nếu x=3k+2x=3k+2 thì x+1=3k+1+2=(3k+3)⋮3x+1=3k+1+2=(3k+3)⋮3
Vậy trong 3 số tự nhiên liên tiêp có 1 số chia hết cho 3.
b) Nhận thấy 17n,17n+1,17n+217n,17n+1,17n+2 là 3 số tự nhiên liên tiếp. Mà 17n17n không chia hết cho 3, nên trong 2 số còn lại 1 số phải ⋮3⋮3
Do vậy: A=(17n
Ta có : 17n + 111....1111 ( n chữ số 1 )
= 18n + 11....111 ( n CS 1 ) - n
Tổng các CS = 18n + n - n = 18n chia hết cho 9
Suy ra 17n + 11...111( n CS 1 ) chia hết cho 9
17n^2+1 chia hết cho 6 hay 17n^2+1 chẵn => 17n^2 lẻ => n^2 lẻ => n lẻ => n ko chia hết cho 2
Mà 2 nguyên tố => (n,2) = 1
17n^2+1 chia hết cho 6 => 17n^2+1 chia hết cho 3 => 17n^2 ko chia hết cho 3 => n^2 ko chia hết cho 3 ( vì 17 và 3 là 2 số nguyên tố cùng nhau) => n ko chia hết cho 3
Mà 3 nguyên tố => (n,3) = 1
=> ĐPCM
k mk nha
_ Vì 111..11 và n đều có số dư bằng nhau nên 111..11-n chia hết cho 9
17n+n-(111..1-n)=18n-(111..11-n)
vì 111..11 và n đều có số dư bằng nhau nên
111..11-n chia hết cho 9=> 17n+111..11 chia hết cho 9
Trần Long Tăng
Ta có :
\(n^3+11n\)
\(=n^3-n+12n\)
\(=n\left(n^2-1\right)+12n\)
\(=\left(n-1\right)\left(n-1\right)n+12n\)
Vì \(n-1\text{ };\text{ }n\text{ };\text{ }n+1\)là tích 3 số nguyên liên tiếp nên : \(n\left(n-1\right)\left(n+1\right)\) chia hết cho 6 .
Mà 12n chia hết cho 6 .
\(\Rightarrow n^3+11n\)chia hết cho 6 .
Cho a,b,c khác 0 và a+b+c=0.Tính giá trị biểu thức
Q=1/a^2+b^2-c^2 + 1/b^2+c^2-a^2 +1/a^2+c^2-b^2