K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2017


16 . x2 = 9 . y2 và x2 + y2  = ?????

13 tháng 10 2017

\(x^2+y^2=???????\)

4 tháng 12 2016

Giải:

a) Đặt \(\frac{x}{10}=\frac{y}{6}=k\)

\(\Rightarrow x=10k,y=6k\)

\(xy=60\)

\(\Rightarrow10k6k=60\)

\(\Rightarrow60k^2=60\)

\(\Rightarrow k^2=1\)

\(\Rightarrow k=\pm1\)

+) \(k=1\Rightarrow x=10;y=6\)

+) \(k=-1\Rightarrow x=-10;y=-6\)

Vậy cặp số \(\left(x;y\right)\)\(\left(10;6\right);\left(-10;-6\right)\)

b) Hình như đề sai !!!

c) Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)

+) \(\frac{x^2}{9}=4\Rightarrow x^2=36\Rightarrow x=\pm6\)

+) \(\frac{y^2}{16}=4\Rightarrow y^2=64\Rightarrow y=\pm8\)

( x, y cùng dấu )

Vậy cặp số ( x; y ) là ( 6; 8 ) ; ( -6; -8 )
 

4 tháng 12 2016

b) x-1/2=y-2/3=z-3/4 vã-2y+3z=16

13 tháng 11 2023

a) Ta có: \(\dfrac{x}{y}=\dfrac{20}{9}\Rightarrow\dfrac{x}{20}=\dfrac{y}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{20}=\dfrac{y}{9}=\dfrac{x-y}{20-9}=\dfrac{-44}{11}=-4\) 

\(\Rightarrow\left\{{}\begin{matrix}x=20\cdot-4=-80\\y=-4\cdot9=-36\end{matrix}\right.\)

b) \(\dfrac{x}{y}=2\dfrac{1}{2}\Rightarrow\dfrac{x}{y}=\dfrac{5}{2}\Rightarrow\dfrac{x}{5}=\dfrac{y}{2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{5}=\dfrac{y}{2}\Rightarrow\dfrac{x+y}{5+2}=\dfrac{40}{7}\) 

\(\Rightarrow\left\{{}\begin{matrix}\text{x}=\dfrac{40}{7}\cdot5=\dfrac{200}{7}\\y=\dfrac{40}{7}\cdot2=\dfrac{80}{7}\end{matrix}\right.\)

13 tháng 11 2023

Làm mỗi ý a,b cũng được ạ

AH
Akai Haruma
Giáo viên
7 tháng 3 2023

a. Áp dụng tính chất dãy tỉ số bằng nhau:

$\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{-21}{7}=-3$

$\Rightarrow x=2(-3)=-6; y=5(-3)=-15$

b. Áp dụng tính chất dãy tỉ số bằng nhau:

$7x=3y=\frac{x}{\frac{1}{7}}=\frac{y}{\frac{1}{3}}=\frac{x-y}{\frac{1}{7}-\frac{1}{3}}=\frac{16}{\frac{-4}{21}}=-84$

$\Rightarrow x=(-84):7=-12; y=-84:3=-28$

 

AH
Akai Haruma
Giáo viên
7 tháng 3 2023

c. $\frac{x}{y}=\frac{5}{9}\Rightarrow \frac{x}{5}=\frac{y}{9}$

Áp dụng tính chất dãy tỉ số bằng nhau:

$\frac{x}{5}=\frac{y}{9}=\frac{3x}{15}=\frac{2y}{18}=\frac{3x+2y}{15+18}=\frac{66}{33}=2$

$\Rightarrow x=2.5=10; y=9.2=18$

d. Áp dụng tính chất dãy tỉ số bằng nhau:

$\frac{x}{15}=\frac{y}{7}=\frac{2y}{14}=\frac{x-2y}{15-14}=\frac{16}{1}=16$

$\Rightarrow x=16.15=240; y=7.16=112$

e.

Đặt $\frac{x}{5}=\frac{y}{2}=k\Rightarrow x=5k ; y=2k$

Khi đó: $xy=5k.2k=10k^2=1000\Rightarrow k^2=100\Rightarrow k=\pm 10$

Với $k=10$ thì $x=5k=50; y=2k=20$

Với $k=-10$ thì $x=5k=-50; y=2k=-20$

 

8 tháng 7 2019

Hướng dẫn 1 phần : ko biết thì hỏi 

a) áp dụng tính chất của dãy tỉ số bằng  nhau ta có

\(\frac{x}{4}=\frac{y}{5}=\frac{y-x}{5-4}=15\)

\(\Rightarrow\hept{\begin{cases}x=15.4=60\\y=15.5=75\end{cases}}\)

Vạy \(\hept{\begin{cases}x=60\\y=75\end{cases}}\)

23 tháng 7 2015

\(\frac{x^2}{9}=\frac{y^2}{16}\) va \(x^2+y^2=110\)

Áp dụng tính chất dãy tỉ số bằng nhau ta co : 

\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{110}{25}=4,4\)

sai de roj ban a mjh moj that do ko saj dau

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Phương trình \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1\) đã có dạng phương trình chính tắc \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) nên ta có: \(a = 4,b = 3 \Rightarrow c = \sqrt {{a^2} + {b^2}}  = \sqrt {{4^2} + {3^2}}  = 5\)

Suy ra ta có:

Tọa độ các tiêu điểm: \({F_1}\left( { - 5;0} \right),{F_2}\left( {5;0} \right)\)

Tọa độ các đỉnh: \(A(0;3),B(4;0),C(0; - 3),D( - 4;0)\)

Độ dài trục thực 8

Độ dài trục ảo 6

b) Phương trình \(\frac{{{x^2}}}{{64}} - \frac{{{y^2}}}{{36}} = 1\) đã có dạng phương trình chính tắc \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) nên ta có: \(a = 8,b = 6 \Rightarrow c = \sqrt {{a^2} + {b^2}}  = \sqrt {{8^2} + {6^2}}  = 10\)

Suy ra ta có:

Tọa độ các tiêu điểm: \({F_1}\left( { - 10;0} \right),{F_2}\left( {10;0} \right)\)

Tọa độ các đỉnh: \(A(0;6),B(8;0),C(0; - 6),D( - 8;0)\)

Độ dài trục thực 16

Độ dài trục ảo 12

c) \({x^2} - 16{y^2} = 16 \Leftrightarrow \frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{1} = 1\)

Vậy ta có phương trình chính tắc của hypebol đã cho là \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{1} = 1\)

Suy ra \(a = 4,b = 1 \Rightarrow c = \sqrt {{a^2} + {b^2}}  = \sqrt {{4^2} + {1^2}}  = \sqrt {17} \)

Từ đó ta có:

Tọa độ các tiêu điểm: \({F_1}\left( { - \sqrt {17} ;0} \right),{F_2}\left( {\sqrt {17} ;0} \right)\)

Tọa độ các đỉnh: \(A(0;1),B(4;0),C(0; - 1),D( - 4;0)\)

Độ dài trục thực 8

Độ dài trục ảo 2

d) \(9{x^2} - 16{y^2} = 144 \Leftrightarrow \frac{{{x^2}}}{{\frac{{144}}{9}}} - \frac{{{y^2}}}{{\frac{{144}}{{16}}}} = 1\)

Vậy ta có phương trình chính tắc của hypebol đã cho là \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1\)

Suy ra \(a = 4,b = 3 \Rightarrow c = \sqrt {{a^2} + {b^2}}  = \sqrt {{4^2} + {3^2}}  = 5\)

Từ đó ta có:

Tọa độ các tiêu điểm: \({F_1}\left( { - 5;0} \right),{F_2}\left( {5;0} \right)\)

Tọa độ các đỉnh: \(A(0;3),B(4;0),C(0; - 3),D( - 4;0)\)

Độ dài trục thực 8

Độ dài trục ảo 6

31 tháng 7 2021

a, Ta có : \(\frac{x}{y}=\frac{3}{4}\Rightarrow\frac{x}{3}=\frac{y}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{3}=\frac{y}{4}=\frac{-3x+5y}{-9+20}=\frac{33}{11}=3\Rightarrow x=9;y=12\)

b, Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{81+256}=\frac{100}{337}\)

\(x=\frac{30\sqrt{337}}{337};y=\frac{40\sqrt{337}}{337}\)

31 tháng 7 2021

sửa phần b nhé 

b, Áp dụng tính châ dãy tỉ số bằng nhau  

\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\Rightarrow x=6;y=8\)