tìm giá trị nhỏ nhất của biểu thức B= A(x+16)/5
( biết A=5/3+căn x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự học giúp bạn có được một gia tài
Jim Rohn – Triết lý cuộc đời
ta có
\(A=\left|x-8\right|+\left|x+2\right|+\left|x+5\right|+\left|x+7\right|\ge\left|-x+8-x-2+x+5+x+7\right|=18\)
Dấu bằng xảy ra khi \(-5\le x\le-2\)
\(B=\left|x+3\right|+\left|x-5\right|+\left|x-2\right|\ge\left|x+3-x+5\right|+\left|x-2\right|=8+\left|x-2\right|\ge8\)
Dấu bằng xảy ra khi \(x=2\)
\(C=\left|x+5\right|-\left|x-2\right|\le\left|x+5+2-x\right|=7\)
Dấu bằng xảy ra khi \(x\ge2\)
\(x-\sqrt{x}+\frac{5}{4}\)
\(=\sqrt{x}\left(\sqrt{x}+1\right)+\frac{5}{4}\)
Ta có : \(x>0\)
\(\Leftrightarrow\sqrt{x}>0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}+1\right)>0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}+1\right)+\frac{5}{4}>\frac{5}{4}\)
=> Amin= \(\frac{5}{4}\)
dấu = xảy ra \(\Leftrightarrow\sqrt{x}+1=0\)
\(A=x-\sqrt{x}+\dfrac{5}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+1\ge1\\ A_{min}=1\Leftrightarrow\sqrt{x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}\)
`A=sqrt{x-2}+sqrt{6-x}(2<=x<=6)`
Áp dụng BĐT `sqrtA+sqrtB>=sqrt{A+B}`
`=>A>=sqrt{x-2+6-x}=2`
Dấu "=" `<=>x=2` hoặc `x=6`
Áp dụng BĐT bunhia
`=>A<=sqrt{2(x-2+6-x)}=2sqrt2`
Dấu "=" `<=>x=4`
`C=sqrt{1+x}+sqrt{8-x}(-1<=x<=8)`
Áp dụng BĐT `sqrtA+sqrtB>=sqrt{A+B}`
`=>A>=sqrt{1+x+8-x}=3`
Dấu "=" `<=>x=-1` hoặc `x=8`
Áp dụng BĐT bunhia
`=>A<=sqrt{2(1+x+8-x)}=3sqrt2`
Dấu "=" `<=>x=7/2`
`D=2sqrt{x+5}+sqrt{1-2x}(-5<=x<=1/2)`
`=sqrt{4x+20}+sqrt{1-2x}`
Áp dụng BĐT `sqrtA+sqrtB>=sqrt{A+B}`
`=>D>=sqrt{4x+20+1-2x}=sqrt{2x+21}`
Mà `x>=-5`
`=>D>=sqrt{-10+21}=sqrt{11}`
Dấu "=" `<=>x=-5`
Bài 1 :
a)x.(x+3)=0
=> x=0 hoặc x+3=0
ta có: x+3=0
x = -3
Vậy x=0 hoặc x=-3
b) (x-2). (5-x) = 0
=> x-2=0 hoặc 5-x =0
TH1
x-2=0
x =2
TH2
5-x =0
x =5
Vậy x=5 hoặc x=2
Bài 2
a) Để A có GTNN thì | x: 9| + |y-5| < 0
=> A=1890 +|x:9|+ | y-5| < 1890
Dấu = chỉ xảy ra khi | x: 9|+|y-5|=0
a: ĐKXĐ: x>=0; x<>1
b \(A=\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\)
\(=\dfrac{x+2\sqrt{x}-x-\sqrt{x}-1}{x\sqrt{x}-1}\cdot\dfrac{x+\sqrt{x}+1}{\sqrt{x}+2}\)
\(=\dfrac{1}{\sqrt{x}+2}\)
c: Khi x=9-4 căn 5 thì \(A=\dfrac{1}{\sqrt{5}-2+2}=\dfrac{\sqrt{5}}{5}\)
d: căn x+2>=2
=>A<=1/2
Dấu = xảy ra khi x=0
bài 2
Ta có:
\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)
Trường hợp 1: \(x-102>0\Rightarrow x>102\)
\(2-x>0\Rightarrow x< 2\)
\(\Rightarrow102< x< 2\left(loại\right)\)
Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)
\(2-x< 0\Rightarrow x>2\)
\(\Rightarrow2< x< 102\left(nhận\right)\)
Vậy GTNN của A là -100 đạt được khi 2<x<102.
\(B=\dfrac{A.\left(x+16\right)}{5}\left(x\ge0\right)\\ =\dfrac{5}{3+\sqrt{x}}.\dfrac{x+16}{5}=\dfrac{x+16}{\sqrt{x}+3}\\ =\dfrac{x-9}{\sqrt{x}+3}+\dfrac{25}{\sqrt{x}+3}\\ =\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\sqrt{x}+3}+\dfrac{25}{\sqrt{x}+3}\\ =\sqrt{x}-3+\dfrac{25}{\sqrt{x}+3}\\ =\left(\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}\right)-6\)
\(\ge2\sqrt{\left(\sqrt{x}+3\right).\dfrac{25}{\sqrt{x}+3}}-6=2\sqrt{25}-6=4\) (Áp dụng BĐT Cô Si. Do \(\sqrt{x}+3,\dfrac{25}{\sqrt{x}+3}>0\forall x\inĐK\))
Dấu = xảy ra khi: \(\sqrt{x}+3=\dfrac{25}{\sqrt{x}+3}\Leftrightarrow\left(\sqrt{x}+3\right)^2=25\Rightarrow\sqrt{x}+3=5\)
\(\Leftrightarrow x=4\left(TMDK\right)\)
Vậy GTNN B là: 4 tại x=4