Giải phương trình
1) (2x+7)2 = 9(x+2)2
2) (x+2)=9(x2-4x+4)
3) 4(2x+7)2 -9(x+3)2=0
4) (5x2-2x+10)2=(3x2+10x-8)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có: \(2x\left(x-3\right)+5\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{5}{2}\end{matrix}\right.\)
2) Ta có: \(\left(x^2-4\right)-\left(x-2\right)\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)+\left(x-2\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)
3) Ta có: \(\left(2x-1\right)^2-\left(2x+5\right)^2=11\)
\(\Leftrightarrow4x^2-4x-1-4x^2-20x-25=11\)
\(\Leftrightarrow-24x=11+1+25=37\)
hay \(x=-\dfrac{37}{24}\)
5) Ta có: \(3x^2-5x-8=0\)
\(\Leftrightarrow3x^2+3x-8x-8=0\)
\(\Leftrightarrow3x\left(x+1\right)-8\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{8}{3}\end{matrix}\right.\)
8) Ta có: \(\left|x-5\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=3\\x-5=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)
10) Ta có: \(\left|2x+1\right|=\left|x-1\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=x-1\\2x+1=1-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x-x=-1-1\\2x+x=1-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=0\end{matrix}\right.\)
9: \(\left(-2x\right)\left(3x^2-2x+4\right)=-6x^3+4x^2-8x\)
\(1,\Leftrightarrow7-2x-4=-x-4\)
\(\Leftrightarrow x-2x=-4-7+4\)
\(\Leftrightarrow-x=-7\)
\(\Leftrightarrow x=7\)
Vậy \(S=\left\{7\right\}\)
\(2,\Leftrightarrow x-1-2x+1=9-x\)
\(\Leftrightarrow x+x-2x=9-1+1\)
\(\Leftrightarrow0x=9\)
\(\Rightarrow x\in\varnothing\)
Vậy \(S=\left\{\varnothing\right\}\)
\(3,\Leftrightarrow2x^2+3x-2x+3=2x^2+10x-x-5\)
\(\Leftrightarrow2x^2-2x^2+3x-2x-10x+x=-5-3\)
\(-8x=-8\)
\(\Rightarrow x=1\)
Vậy \(S=\left\{1\right\}\)
Bài 1:
a) (3x - 2)(4x + 5) = 0
<=> 3x - 2 = 0 hoặc 4x + 5 = 0
<=> 3x = 2 hoặc 4x = -5
<=> x = 2/3 hoặc x = -5/4
b) (2,3x - 6,9)(0,1x + 2) = 0
<=> 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0
<=> 2,3x = 6,9 hoặc 0,1x = -2
<=> x = 3 hoặc x = -20
c) (4x + 2)(x^2 + 1) = 0
<=> 4x + 2 = 0 hoặc x^2 + 1 # 0
<=> 4x = -2
<=> x = -2/4 = -1/2
d) (2x + 7)(x - 5)(5x + 1) = 0
<=> 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0
<=> 2x = -7 hoặc x = 5 hoặc 5x = -1
<=> x = -7/2 hoặc x = 5 hoặc x = -1/5
1)\(\sqrt{4x^2+12x+9}=2-x\)
\(\Leftrightarrow\sqrt{\left(2x+3\right)^2}=2-x\)
\(\Leftrightarrow\left|2x+3\right|=2-x\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=2-x\\2x+3=x-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=-5\end{matrix}\right.\)
\(\)
\(a,\left(2x-1\right)^2=49\)
\(\left[{}\begin{matrix}2x-1=7\\2x-1=-7\end{matrix}\right.\)
\(\left[{}\begin{matrix}2x=8\\2x=-6\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)
\(b,\left(2x+7\right)^2=9\left(x+2\right)^2\)
\(4x^2+28x+49=9x^2+36x+36\)
\(4x^2+28x+49-9x^2-36x-36=0\)
\(-5x^2-8x+13=0\)
\(5x^2+13-5x-13=0\)
\(x\left(5x+13\right)-1\left(5x+13\right)=0\)
\(\left(x-1\right)\left(5x+13\right)=0\)
\(\left[{}\begin{matrix}x=1\\5x=-13\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=1\\x=-\frac{13}{5}\end{matrix}\right.\)
\(c,4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)
\(\left[2\left(2x+7\right)\right]^2-\left[3\left(x+3\right)\right]^2=0\)
\(\left(4x+14\right)^2-\left(3x+9\right)^2=0\)
\(4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)
\(x=-5\)
\(d,\left(5x-3\right)^2-\left(4x-7\right)^2=0\)
\(25x^2-30x+9-16x^2+56x-49=0\)
\(9x^2+26x-40=0\)
\(9x^2+36x-10x-40=0\)
\(9x\left(x+4\right)-10\left(x+4\right)=0\)
\(\left(9x-10\right)\left(x+4\right)=0\)
\(\left[{}\begin{matrix}9x-10=0\\x+4=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\frac{10}{9}\\x=-4\end{matrix}\right.\)
\(1,\)\(\left(2x+3\right)^2=4x^2+12x+9\)
\(2,\)\(\left(3x+2y\right)^2=9x^2+12xy+4x^2\)
\(3,\)\(\left(3a-1\right)^2=9x^2-6x+1\)
\(4,\)\(\left(a-2\right)^2=a^2-4a+4\)
\(5,\)\(\left(1-5a\right)^2=1-10a+25a^2\)
\(6,\)\(\left(x-4\right)^3=x^3-12a^2+48a-64.\)
\(7,\)\(\left(x^2-2y\right)^2=x^4-4x^2y-4y^2\)
\(8,\)\(\left(5x^2-2\right)\left(5x^2+2\right)=25x^4-4\)
\(9,\)\(\left(2a^2-7\right)\left(2a^2+7\right)=4a^4-49\)
\(10,\)\(\left(x-1\right)\left(x^2+x+1\right)=x^3-1\)
\(11,\)\(\left(x^3-2\right)\left(x^6+2x^3+4\right)=x^9-8\)
\(12,\)\(\left(3x+2\right)\left(9x^2-6x+4\right)=27x^3+8\)
\(13,\)\(\left(x^2+3\right)\left(x^4-3x^2+9\right)=x^6+27\)
1, ( 2x + 3 )2 = 4x2 + 12x + 9
2, ( 3x + 2y )2 = 9x2 +12xy + 4y2
3 ( 3a - 1 )2 = 9a2 - 6x + 1
4, ( a - 2 )2 = a2 - 4a + 4
5, ( 1 - 5a )2 = 1 - 10a + 25a2
6, ( x- 4 )3 = x3 - 12x2 + 48x - 64
7, ( x2 - 2y )2 = x4 - 4x2y + 4y2
8, ( 5X2 - 2 ).( 5X2 + 2 ) = 25X2 - 4
9, ( 2a2 - 7 ).( 2a2 + 7 ) = 4a4 - 49
10, ( x - 1 ).( x2 + x + 1 ) = x3 - 1
Câu 1 :
a, \(\frac{3\left(2x+1\right)}{4}-\frac{5x+3}{6}=\frac{2x-1}{3}-\frac{3-x}{4}\)
\(\Leftrightarrow\frac{6x+3}{4}+\frac{3-x}{4}=\frac{2x-1}{3}+\frac{5x+3}{6}\)
\(\Leftrightarrow\frac{5x+6}{4}=\frac{9x+1}{6}\Leftrightarrow\frac{30x+36}{24}=\frac{36x+4}{24}\)
Khử mẫu : \(30x+36=36x+4\Leftrightarrow-6x=-32\Leftrightarrow x=\frac{32}{6}=\frac{16}{3}\)
tương tự
\(\frac{19}{4}-\frac{2\left(3x-5\right)}{5}=\frac{3-2x}{10}-\frac{3x-1}{4}\)
\(< =>\frac{19.5}{20}-\frac{8\left(3x-5\right)}{20}=\frac{2\left(3-2x\right)}{20}-\frac{5\left(3x-1\right)}{20}\)
\(< =>95-24x+40=6-4x-15x+5\)
\(< =>-24x+135=-19x+11\)
\(< =>5x=135-11=124\)
\(< =>x=\frac{124}{5}\)
1)
\(\left(2x+7\right)^2=9\left(x+2\right)^2\\ \Leftrightarrow\left(2x+7\right)^2=\left(3x+6\right)^2\\ \Leftrightarrow\left(2x+7\right)^2-\left(3x+6\right)^2=0\\ \Leftrightarrow\left(2x+7+3x+6\right)\left(2x+7-3x-6\right)=0\\ \Leftrightarrow\left(5x+13\right)\left(1-x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}5x=-13\\x=1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{13}{5}\\x=1\end{matrix}\right.\)
Vậy: ...
2)
\(\left(x+2\right)=9\left(x^2+4x+4\right)\\ \Leftrightarrow\left(x+2\right)=9\left(x+2\right)^2\\ \Leftrightarrow9\left(x+2\right)^2-\left(x+2\right)=0\\ \Leftrightarrow\left(x+2\right)\left[9\left(x+2\right)-1\right]=0\\ \Leftrightarrow\left(x+2\right)\left(9x+17\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\9x=-17\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-\dfrac{17}{9}\end{matrix}\right.\)
Vậy: ...
3)
\(4\left(2x+7\right)^2-9\left(x+3\right)^2=0\\ \Leftrightarrow\left(4x+14\right)^2-\left(3x+9\right)^2=0\\ \Leftrightarrow\left(4x+14+3x+9\right)\left(4x+14-3x-9\right)=0\\ \Leftrightarrow\left(7x+23\right)\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}7x=-23\\x=5\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-23}{7}\\x=5\end{matrix}\right.\)
Vậy: ...
4)
\(\left(5x^2-2x+10\right)^2=\left(3x^2+10x-8\right)^2\\ \Leftrightarrow\left(5x^2-2x+10\right)^2-\left(3x^2+10x-8\right)^2=0\\\Leftrightarrow\left(5x^2-2x+10+3x^2+10x-8\right)\left(5x^2-2x+10-3x^2-10x+8\right)=0\\ \Leftrightarrow\left(8x^2+8x+2\right)\left(2x^2-12x+18\right)=0\\ \Leftrightarrow4\left(4x^2+4x+1\right)\left(x^2-6x+9\right)\\ \Leftrightarrow4\left(2x+1\right)^2\left(x-3\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}4x=-1\\x=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{4}\\x=3\end{matrix}\right.\)
Vậy: ...