Cho \(a+b=m\) ; \(a-b=n\).
Tính \(ab\) ; \(a^3-b^3\) theo \(m\) và \(n\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Nếu như có số tự nhiên k (kEN)sao cho (a +b) = m.k
2.________________________________(a - b)______
3_________________________________(a + b + c) = m.k
Chỉ có thể đưa ra ví dụ thôi chứ đây đã là kiến thức cơ bản r nhé bn.
Áp dụng công thức
- Tất cả các số trong 1 tổng đều chia hết cho cùng 1 số thì cả tổng đó sẽ chia hết cho số đó , chỉ cần 1 số ko chia hết thì cả tổng đó cũng sẽ ko chia hết
1.
\(A\subset B\Leftrightarrow\left\{{}\begin{matrix}2m-1\le-1\\2m+3\ge1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\le0\\m\ge-1\end{matrix}\right.\) \(\Rightarrow-1\le m\le0\)
\(B\subset A\Leftrightarrow\left\{{}\begin{matrix}-1\le2m-1\\2m+3\le1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ge0\\m\le-1\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m thỏa mãn yêu cầu
\(A\cap B\) nhưng bằng cái gì? Chỗ này đề thiếu
2.
a.
\(B\subset A\Leftrightarrow\left\{{}\begin{matrix}-4\le m-7\\m\le3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ge3\\m\le3\end{matrix}\right.\) \(\Leftrightarrow m=3\)
b.
\(A\cup B=A\Leftrightarrow B\subset A\Leftrightarrow\left\{{}\begin{matrix}m\ge-3\\m\le1\\-4\le-3\end{matrix}\right.\) \(\Rightarrow-3\le m\le1\)
c.
\(A\backslash B=\varnothing\Leftrightarrow A\subset B\Leftrightarrow\left\{{}\begin{matrix}m-1< 5\\m-1\ge3\end{matrix}\right.\) \(\Rightarrow4\le m< 6\)
Bài 1:
Để A giao B bằng rỗng thì \(\left[{}\begin{matrix}m+3< -3\\2m-1>6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m< -6\\m>\dfrac{7}{2}\end{matrix}\right.\)
a + b = m
a - b = n
=> a = (m + n)/2
b = (m - n)/2
Có: a.b = (m + n)/2.(m - n)/2
= (m^2 - n^2)/4
=> a^3 - b^3 = (m + n)^3/2^3 - (m - n)^2/2^3
= (m + n)^3/8 - (m - n)^3/8
= [(m + n)^3 - (m - n)^3]/8
= [(m + n - m + n)((m + n)^2 + (m + n)(m - n) + (m - n)^2)]/8
= [n(m^2 + n^2 + 2mn + m^2 - n^2 + m^2 + n^2 - 2mn)]/8
= n(3m^2 + 2n^2)/8
= m^2n − (m^2−n^2)/4 .n