cho đa thức sau
M= 5x\(^2\)-11xy+7y\(^2\)-(x\(^2\)+xy-2y\(^2\))
a, thu gọn M
b, chứng minh M\(\ge\)0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho đa thức sau
M= 5x\(^2\)-11xy+7y\(^2\)-(x\(^2\)+xy-2y\(^2\))
a, thu gọn M
b, chứng minh M\(\ge\)0
a) Ta có: \(M=x^2y+xy^2-5x^2y^2+x^3-2x^2y+6xy^2\)
\(=\left(x^2y-2x^2y\right)+\left(xy^2+6xy^2\right)-5x^2y^2+x^3\)
\(=x^3-x^2y+7xy^2-5x^2y^2\)
Bậc là 4
Ta có: \(N=3x^3+xy+y^2-x^2y^2-2-2xy+7y^2\)
\(=3x^3+\left(xy-2xy\right)+\left(y^2+7y^2\right)-x^2y^2-2\)
\(=3x^2+8y^2-xy-x^2y^2-2\)
Bậc là 4
Bài làm
1.
a) 5x.3xy2
= 15x2y2
b) ( -2/3 xy2z )( -3x2y)2
= ( -2/3xy2z)( 9x4y2 )
= -6x5y4z
2)
a) M = P + Q = ( 3x2y - 2x + 5xy2 - 7y2 ) + ( 3xy2 - 7y2 - 9x2y - x - 5 )
= 3x2y - 2x + 5xy2 - 7y2 + 3xy2 - 7y2 - 9x2y - x - 5
= ( 3x2y - 9x2y ) + ( 5xy2 + 3xy2 ) + ( -2x - x ) + ( -7y2 - 7y2 ) - 5
= -6x2y + 8xy2 - 3x -14y2 - 5
Vậy M = P + Q = -6x2y + 8xy2 - 3x -14y2 - 5
b) M = Q - P = ( 3xy2 - 7y2 - 9x2y - x - 5 ) - ( 3x2y - 2x + 5xy2 - 7y2 )
= 3xy2 - 7y2 - 9x2y - x - 5 - 3x2y + 2x - 5xy2 + 7y2
= ( -3x2y - 9x2y ) + ( 3xy2 - 5xy2 ) + ( 2x - x ) + ( -7y2 + 7y2 ) - 5
= -11x2y - 2xy2 + x - 5
Vậy M = Q - P = -11x2y - 2xy2 + x - 5
* Đa thức thu gọn là đa thức không còn hai hạng tử nào đồng dạng
A = (xy7- xy7) + (x3y5-x3y5)+x8+10
A = x8+10
* M + N
= (5xyz -5x2 + 8xy + 5)+(5x2+2xyz-8xy-7+y2)
= 5xyz - 5x2 +8xy +5+5x2 +2 xyz - 8xy -7 + y2
= ( 5xyz + 2xyz ) + ( -5x2 +5x2) + ( 8xy - 8xy ) + ( 5-7) +y2
= 7xyz - 2 + y2
* M - N
= ( 5xyz - 5x2 +8xy +5) - ( 5x2 + 2xyz - 8xy -7 +y2)
= 5xyz - 5x2 + 8xy + 5 - 5x2 - 2xyz + 8xy + 7 - y2
= ( 5xyz - 2xyz) + ( -5x2 - 5x2) + ( 8xy + 8xy) + ( 5+7) -y2
= 3xyz - 10x2 +16xy +12 -y2
a ) A = M + N = ( 2x2y - xy2 + 3x - 2y ) + ( 2xy2 - 2x2y - 5x + 2y )
= 2x2y - xy2 + 3x - 2y + 2xy2 - 2x2y - 5x + 2y
= ( 2x2y - 2x2y ) + ( -xy2 + 2xy2 ) + ( 3x - 5x ) + ( - 2y + 2y )
= 0 + ( -1 +2 ) xy2 + ( 3 - 5 )x + 0
= xy2 - 2x
Vậy A = M + N = xy2 - 2x
B = N - M = 2xy2 - 2x2y - 5x + 2y - ( 2x2y - xy2 + 3x - 2y )
= 2xy2 - 2x2y - 5x + 2y - 2x2y + xy2 - 3x + 2y
= ( 2xy2 + xy2 ) + ( -2x2y - 2x2y ) + ( - 5x - 3x ) + ( 2y + 2y )
= ( 2 + 1 )xy2 + ( -2 - 2 )x2y + ( - 5 - 3 )x + ( 2 + 2 )y
= 3xy2 - 4x2y - 8x + 4y
Vậy B = 3xy2 - 4x2y - 8x + 4y
Bài 1
a)M+N=\(x^2y+xy^2-5x^2y^2+x^3+x^3+xy+3xy^2-x^2y+x^2y^2\)
=4xy2-4x2y2+2x3+xy
b)M-N=\(x^2y+xy^2-5x^2y^2+x^3-x^3-xy-3xy^2+x^2y-x^2y^2\)
=\(2x^2y-2xy^2-xy-6x^2y^2\)
CHỈ GỢI Ý THÔI
M = (x^2 - xy) + (xy^2 - y^3) - x - y^2 + 5
M = x(x - y) + y^2(x - y) - x - y^2 + 5
.....
PHẦN N KO BIẾT LÀM
Bài 4 :
Thay x=y+5 , ta có :
a ) ( y+5)*(y5+2)+y*(y-2)-2y*(y+5)+65
=(y+5)*(y+7)+y^2-2y-2y^2-10y+65
=y^2+7y+5y+35-y^2-2y-2y^2-10y+65
= 100
Bài 5 :
A = 15x-23y
B = 2x-3y
Ta có : A-B
= ( 15x -23y)-(2x-3y)
=15x-23y-2x-3y
=13x-26y
=13x*(x-2y) chia hết cho 13
=> Nếu A chia hết cho 13 thì B chia hết cho 13 và ngược lại