tìm khoảng biến thiên của hàm số f(x) = \(\sqrt{2x-x^{2^{ }}}\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
\(D=\left[0;2\right]\)
Có \(f'\left(x\right)=\dfrac{-x+1}{\sqrt{2x-x^2}},\forall x\in\left(0;2\right)\)
\(f'\left(x\right)=0\Leftrightarrow x=1\)
Vậy hàm số đã cho đồng biến trên \(\left(0;1\right)\) và nghịch biến trên \(\left(1;2\right)\)
ĐKXĐ: \(2x-x^2>=0\)
=>\(x^2-2x< =0\)
=>x(x-2)<=0
=>0<=x<=2
\(y=\sqrt{2x-x^2}\)
=>\(y'=\dfrac{\left(2x-x^2\right)'}{2\sqrt{2x-x^2}}=\dfrac{-2x+2}{2\sqrt{2x-x^2}}=\dfrac{-x+1}{\sqrt{2x-x^2}}\)
Đặt y'>0
=>-x+1>0
=>-x>-1
=>x<1
=>0<=x<1
=>Hàm số đồng biến khi 0<=x<1
Đặt y'<0
=>-x+1<0
=>-x<-1
=>x>1
=>1<x<=2
=>Hàm số nghịch biến khi 1<x<=2