K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6

\(D=\left[0;2\right]\)

Có \(f'\left(x\right)=\dfrac{-x+1}{\sqrt{2x-x^2}},\forall x\in\left(0;2\right)\)

\(f'\left(x\right)=0\Leftrightarrow x=1\)

Vậy hàm số đã cho đồng biến trên \(\left(0;1\right)\) và nghịch biến trên \(\left(1;2\right)\)

ĐKXĐ: \(2x-x^2>=0\)

=>\(x^2-2x< =0\)

=>x(x-2)<=0

=>0<=x<=2

\(y=\sqrt{2x-x^2}\)

=>\(y'=\dfrac{\left(2x-x^2\right)'}{2\sqrt{2x-x^2}}=\dfrac{-2x+2}{2\sqrt{2x-x^2}}=\dfrac{-x+1}{\sqrt{2x-x^2}}\)

Đặt y'>0

=>-x+1>0

=>-x>-1

=>x<1

=>0<=x<1

=>Hàm số đồng biến khi 0<=x<1

Đặt y'<0

=>-x+1<0

=>-x<-1

=>x>1

=>1<x<=2

=>Hàm số nghịch biến khi 1<x<=2