cho số nguyên dương a và đa thức P(x) = ax^3 + bx^2 + cx + d, thỏa mãn P(5) - P(4) = 2024. Chứng minh rằng P(7) - P(5) chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi: \(A=n^2+4\)và \(B=n^2+16\)
Ta có: \(A=n^2+4=n^2-1+5=\left(n-1\right)\left(n+1\right)+5\)(1)
và \(B=n^2+16=n^2-4+20=\left(n-2\right)\left(n+2\right)+20\)(2)
Vì A;B là số nguyên tố nên từ (1) và (2) suy ra: \(\left(n-1\right)\left(n+1\right)\)và \(\left(n-2\right)\left(n+2\right)\)không chia hết cho 5.
Mặt khác, tích của 5 số tự nhiên liên tiếp: \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)phải chia hết cho 5.
Suy ra n chia hết cho 5. ĐPCM.
1. Ta có \(\left(b-a\right)\left(b+a\right)=p^2\)
Mà b+a>b-a ; p là số nguyên tố
=> \(\hept{\begin{cases}b+a=p^2\\b-a=1\end{cases}}\)
=> \(\hept{\begin{cases}b=\frac{p^2+1}{2}\\a=\frac{p^2-1}{2}\end{cases}}\)
Nhận xét :+Số chính phương chia 8 luôn dư 0 hoặc 1 hoặc 4
Mà p là số nguyên tố
=> \(p^2\)chia 8 dư 1
=> \(\frac{p^2-1}{2}⋮4\)=> \(a⋮4\)(1)
+Số chính phương chia 3 luôn dư 0 hoặc 1
Mà p là số nguyên tố lớn hơn 3
=> \(p^2\)chia 3 dư 1
=> \(\frac{p^2-1}{2}⋮3\)=> \(a⋮3\)(2)
Từ (1);(2)=> \(a⋮12\)
Ta có \(2\left(p+a+1\right)=2\left(p+\frac{p^2-1}{2}+1\right)=p^2+1+2p=\left(p+1\right)^2\)là số chính phương(ĐPCM)
Thử nha :33
Do a không chia hết cho 3 nên \(\orbr{\begin{cases}a=3k+1\\a=3k+2\end{cases}\left(k\inℤ\right)}\)
Với \(a=3k+1\) thì : \(P\left(x\right)=x^3-\left(3k+1\right)^2.x+2016b\)
\(=x^3-9k^2x-6k-x+2016b\)
\(=x\left(x-1\right)\left(x+1\right)-9k^2x-6kx+2016b⋮3\)
Với \(a=3k+2\) thi \(P\left(x\right)=x^3-\left(3k+2\right)^2.x+2016b\)
\(=x^3-9k^2x-12kx-4x+2016b\)
\(=x\left(x^2-4\right)-9k^2x-12kx+2016b\)
\(=\left(x-2\right)x\left(x+2\right)-9k^2x-12kx+2016b⋮3\)
Vậy ta có điều phải chứng minh.
a+5b chia hết 7 thì a và b chia hết cho 7
vậy 10a +b chia hết 7
Ta có :
\(a+5b⋮7\)
\(\Leftrightarrow21a-a+5b-7b⋮7\)
\(\Leftrightarrow20a-2b⋮7\)
\(\Leftrightarrow2\left(10a-b\right)⋮7\)
Mà ( 2 ; 7 ) = 1
=> 10a - b chia hết cho 7
** Sai đề nhé bạn
Ta xét hiệu:
(10a + 50b) - (10a + b) = 10a + 50b - 10a - b
= 49b \(⋮\) 7
\(\Rightarrow\) (10a + 50b) - (10a + b) (1)
Theo bài ra: a + 5b \(⋮\) 7
\(\Rightarrow\) 10(a + 5b) \(⋮\) 7 (2)
Từ (1) và (2), suy ra:
10a + b \(⋮\) 7
Vậy nếu a + 5b chia hết cho 7 thì 10a + b cũng chia hết cho 7
Ta có :
\(2\left(10a+b\right)+\left(a+5b\right)=20a+2b+a+5b=\left(20a+a\right)+\left(2b+5b\right)\)
\(=21a+7b=7\left(3a+b\right)\)
+) Nếu : \(\left(10a+b\right)⋮7\Rightarrow\left(a+5b\right)⋮7\) ( Vì : \(7\left(3a+b\right)⋮7\) )
+) Nếu : \(\left(a+5b\right)⋮7\Rightarrow2\left(10a+b\right)⋮7\) ( Vì : \(7\left(3a+b\right)⋮7\) )
Mà : 2 và 7 là hai số nguyên tố cùng nhau .
\(\Rightarrow10a+b⋮7\)
Vậy ...