Bài 8: Cho tam giác ABC cân tại A . Trên tia đối của tia BC lấy điểm M , trên tia đối của tia CB lấy điểm N sao cho BM = CN .
1) Chứng minh tam giác ABM = tam giác ACN .
2) Kẻ BH vuông góc AM , CK vuông góc AN ( H thuộc AM, K thuộc AN) . Chứng minh AH = AK .
3) Gọi O là giao điểm của BH và CK. Tam giác OBC là tam giác gì? Vì sao?
Các bạn giúp mik với ạ mik cần gấp lắm
1: Ta có: \(\widehat{ABC}+\widehat{ABM}=180^0\)(hai góc kề bù)
\(\widehat{ACB}+\widehat{ACN}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)
nên \(\widehat{ABM}=\widehat{ACN}\)
Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
Do đó: ΔABM=ΔACN
2: ΔABM=ΔACN
=>\(\widehat{BAM}=\widehat{CAN};\widehat{AMB}=\widehat{ANC}\); AM=AN
Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{BAH}=\widehat{CAK}\)
Do đó: ΔAHB=ΔAKC
=>AH=AK
3: ΔAHB=ΔAKC
=>\(\widehat{ABH}=\widehat{ACK}\)
Ta có: \(\widehat{ABH}+\widehat{ABC}+\widehat{OBC}=180^0\)
\(\widehat{ACK}+\widehat{ACB}+\widehat{OCB}=180^0\)
mà \(\widehat{ABH}=\widehat{ACK};\widehat{ABC}=\widehat{ACB}\)
nên \(\widehat{OBC}=\widehat{OCB}\)
=>ΔOBC cân tại O