K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2016

\(\sqrt{\sqrt{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}}=\sqrt{\sqrt{5-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}}\)

\(=\sqrt{\sqrt{5-\sqrt{3-\left(2\sqrt{5}-3\right)}}}=\sqrt{\sqrt{5-\sqrt{6-2\sqrt{5}}}}=\sqrt{\sqrt{5-\sqrt{\left(\sqrt{5}-1\right)^2}}}\)

\(=\sqrt{\sqrt{5-\left(\sqrt{5}-1\right)}}=\sqrt{\sqrt{6-\sqrt{5}}}\)

17 tháng 9 2016

= 1,392869546

27 tháng 7 2017

a) \(\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}\)

\(\Leftrightarrow-\left(\sqrt{3}+11\sqrt{5}+\sqrt{29}\right)\)

\(\Leftrightarrow\sqrt{637+22\sqrt{145}+2\sqrt{6\left(317+11\sqrt{145}\right)}}\)

\(\Leftrightarrow\sqrt{3}-11\sqrt{5}-\sqrt{29}\)

b) Câu hỏi của Nguyễn Trung Anh - Toán lớp 9 - Học toán với OnlineMath giống câu này!

27 tháng 7 2017

a/ \(\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}\)

\(=\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}\)

\(=\sqrt{5}-\sqrt{6-2\sqrt{5}}\)

\(=\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=\sqrt{5}-\sqrt{5}+1=1\)

b/ Câu hỏi của Nguyễn Trung Anh - Toán lớp 9 - Học toán với OnlineMath giống câu này.

3 tháng 11 2016

\(\sqrt{\frac{3+\sqrt{5}}{3-\sqrt{5}}}+\sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}}\)

\(=\frac{3+\sqrt{5}}{2}+\frac{3-\sqrt{5}}{2}=3\)

PS: Nhân lượng liên hiệp

12 tháng 9 2016

a + \(2\sqrt{a-\:1}\)= (a - 1) + \(2\sqrt{a-\:1}\)+ 1 = (\(1\:\:+\sqrt{a-1}\))2

Tương tự cho cái còn lại sẽ ra

3 tháng 11 2016

Đặt \(\hept{\begin{cases}\sqrt{3-\sqrt{5}}=A\\\sqrt{3+\sqrt{5}}=B\end{cases}}\)

Ta có A.B = 2

(A + B)2 = 6 + 4 = 10 => A + B = \(\sqrt{10}\)

Ta có cái ban đầu

= A2 B + AB2 = AB(A + B) = \(2\sqrt{10}\)

3 tháng 11 2016

sao gọn vậy

7 tháng 10 2018

\(\sqrt{2x-3}+\sqrt{5-2x}=3x^2-12x+14\)(ĐKXĐ: \(\frac{3}{2}\le x\le\frac{5}{2}\))

\(\Leftrightarrow2\sqrt{2x-3}+2\sqrt{5-2x}=6x^2-24x+28\)

\(\Leftrightarrow6x^2-24x+28-2\sqrt{2x-3}-2\sqrt{5-2x}=0\)

\(\Leftrightarrow\left(2x-3-2\sqrt{2x-3}+1\right)+\left(5-2x-2\sqrt{5-2x}+1\right)+6x^2-24x+24=0\)

\(\Leftrightarrow\left(\sqrt{2x-3}-1\right)^2+\left(\sqrt{5-2x}-1\right)^2+6\left(x-2\right)^2=0\)

Do \(\left(\sqrt{2x-3}-1\right)^2\ge0;\left(\sqrt{5-2x}-1\right)^2\ge0;6\left(x-2\right)^2\ge0\forall x\in R\)

Nên \(\hept{\begin{cases}\sqrt{2x-3}-1=0\\\sqrt{5-2x}-1=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x-3=1\\5-2x=1\\x=2\end{cases}}\Leftrightarrow x=2\)(t/m ĐKXĐ)

Vậy pt có nghiệm duy nhất là x=2.

8 tháng 6 2017

\(\frac{B}{\sqrt{2}}=\frac{\frac{2+\sqrt{3}}{2}}{\sqrt{2}+\sqrt{\frac{4+2\sqrt{3}}{2}}}+\frac{\frac{2-\sqrt{3}}{2}}{\sqrt{2}-\sqrt{\frac{4-2\sqrt{3}}{2}}}\)

\(=\frac{\frac{2+\sqrt{3}}{2}}{\frac{2}{\sqrt{2}}+\sqrt{\frac{\left(\sqrt{3}+1\right)^2}{2}}}+\frac{\frac{2-\sqrt{3}}{2}}{\frac{2}{\sqrt{2}}-\sqrt{\frac{\left(\sqrt{3}-1\right)^2}{2}}}\)

\(=\frac{\frac{2+\sqrt{3}}{2}}{\frac{2}{\sqrt{2}}+\frac{\sqrt{3}+1}{\sqrt{2}}}+\frac{\frac{2-\sqrt{3}}{2}}{\frac{2}{\sqrt{2}}-\frac{\sqrt{3}-1}{\sqrt{2}}}=\frac{\frac{2+\sqrt{3}}{2}}{\frac{\sqrt{3}+3}{\sqrt{2}}}+\frac{\frac{2-\sqrt{3}}{2}}{\frac{3-\sqrt{3}}{\sqrt{2}}}\)

\(=\frac{\left(2+\sqrt{3}\right).\sqrt{2}}{2\cdot\left(3+\sqrt{3}\right)}+\frac{\left(2-\sqrt{3}\right).\sqrt{2}}{2.\left(3-\sqrt{3}\right)}\)

=> \(B=\frac{2+\sqrt{3}}{3+\sqrt{3}}+\frac{2-\sqrt{3}}{3-\sqrt{3}}=\frac{\left(2+\sqrt{3}\right)\left(3-\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}+\frac{\left(2-\sqrt{3}\right)\left(3+\sqrt{3}\right)}{\left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right)}\)

\(B=\frac{3+\sqrt{3}}{6}+\frac{3-\sqrt{3}}{6}=1\)

----

Vài chỗ mình làm vắn tắt không hiểu cứ hỏi nhé, còn kết quả mình ấn máy tính ra chính xác rùi :)

9 tháng 10 2017

1) \(2\sqrt{5}-\sqrt{125}-\sqrt{80}+\sqrt{605}\)

\(=2\sqrt{5}-\sqrt{5^2.5}-\sqrt{4^2.5}+\sqrt{11^2.5}\)

\(=2\sqrt{5}-5\sqrt{5}-4\sqrt{5}+11\sqrt{5}\)

\(=4\sqrt{5}\)

2) \(\sqrt{15-\sqrt{216}}+\sqrt{33-12\sqrt{6}}\)

\(=\sqrt{15-\sqrt{6^2.6}}+\sqrt{33-12\sqrt{6}}\)

\(=\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)

\(=\sqrt{\left(\sqrt{6}\right)^2-6\sqrt{6}+3^2}+\sqrt{\left(2\sqrt{6}\right)^2-12\sqrt{6}+3^2}\)

\(=\sqrt{\left(\sqrt{6}-3\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)

\(=\left|\sqrt{6}-3\right|+\left|2\sqrt{6}-3\right|\)

\(=3-\sqrt{6}+2\sqrt{6}-3\)  ( vi \(\sqrt{6}-3< 0\))

\(=\sqrt{6}\)

5) \(2\sqrt{\frac{16}{3}}-3\sqrt{\frac{1}{27}}-6\sqrt{\frac{4}{75}}\)

\(=2\frac{4}{\sqrt{3}}-3.\frac{1}{3}-6\sqrt{\frac{2^2}{3.5^2}}\)

\(=\frac{8\sqrt{3}}{3}-1-6.\frac{2}{5}.\sqrt{\frac{1}{3}}\)

\(=8\frac{\sqrt{3}}{3}-1-\frac{12}{5}.\frac{\sqrt{3}}{3}\)

\(=\frac{28}{5}.\frac{\sqrt{3}}{3}-1\)

7 tháng 8 2018

 Báo cáo sai phạm

1) 2√5−√125−√80+√605

=2√5−√52.5−√42.5+√112.5

=2√5−5√5−4√5+11√5

=4√5

2) √15−√216+√33−12√6

=√15−√62.6+√33−12√6

=√15−6√6+√33−12√6

=√(√6)2−6√6+32+√(2√6)2−12√6+32

=√(√6−3)2+√(2√6−3)2

=|√6−3|+|2√6−3|

=3−√6+2√6−3  ( vi √6−3<0)

=√6

5) 2√163 −3√127 −6√475 

=24√3 −3.13 −6√223.52 

=8√33 −1−6.25 .√13 

=8√33 −1−125 .√33 

=285 .√33 −1