K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 5 2024

Bạn xem lại đề. Kết quả ra $m$ khá xấu, không phù hợp với bài toán PT bậc 2 cơ bản.

8 tháng 6 2021

Nãy ghi nhầm =="

a)Hđ gđ là nghiệm pt

`x^2=2x+2m+1`

`<=>x^2-2x-2m-1=0`

Thay `m=1` vào pt ta có:

`x^2-2x-2-1=0`

`<=>x^2-2x-3=0`

`a-b+c=0`

`=>x_1=-1,x_2=3`

`=>y_1=1,y_2=9`

`=>(-1,1),(3,9)`

Vậy tọa độ gđ (d) và (P) là `(-1,1)` và `(3,9)`

b)

Hđ gđ là nghiệm pt

`x^2=2x+2m+1`

`<=>x^2-2x-2m-1=0`

PT có 2 nghiệm pb

`<=>Delta'>0`

`<=>1+2m+1>0`

`<=>2m> -2`

`<=>m> 01`

Áp dụng hệ thức vi-ét:`x_1+x_2=2,x_1.x_2=-2m-1`

Theo `(P):y=x^2=>y_1=x_1^2,y_2=x_2^2`

`=>x_1^2+x_2^2=14`

`<=>(x_1+x_2)^2-2x_1.x_2=14`

`<=>4-2(-2m-1)=14`

`<=>4+2(2m+1)=14`

`<=>2(2m+1)=10`

`<=>2m+1=5`

`<=>2m=4`

`<=>m=2(tm)`

Vậy `m=2` thì ....

NV
10 tháng 4 2021

\(\dfrac{sin^3x+cos^3x}{sinx+cosx}=\dfrac{\left(sinx+cosx\right)\left(sin^2x+cos^2x-sinx.cosx\right)}{sinx+cosx}\)

\(=sin^2x+cos^2x-sinx.cosx=1-sinx.cosx\)

NV
14 tháng 4 2021

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m+1\\x_1x_2=-2m-7\end{matrix}\right.\)

\(\left(x_1+2x_2\right)\left(x_2+2x_1\right)=3\)

\(\Leftrightarrow2x_1^2+2x_2^2+5x_1x_2=3\)

\(\Leftrightarrow2\left(x_1+x_2\right)^2+x_1x_2=3\)

\(\Leftrightarrow2\left(-2m+1\right)^2+\left(-2m-7\right)=3\)

\(\Leftrightarrow4m^2-5m-4=0\) \(\Rightarrow m=\dfrac{5\pm\sqrt{89}}{8}\)

6 tháng 4 2021

undefined

AH
Akai Haruma
Giáo viên
22 tháng 5 2021

Lời giải:

Vì $CF, BE$ là đường cao của tam giác $ABC$ nên:

$\widehat{AFH}=\widehat{AEH}=90^0$

Tứ giác $AEHF$ có tổng hai góc đối nhau $\widehat{AEH}+\widehat{AFH}=90^0+90^0=180^0$ nên là tứ giác nội tiếp.

b) 

Vì $AFHE$ nội tiếp nên $\widehat{F_2}=\widehat{H_2}=\widehat{H_1}$

$\widehat{F_1}=\widehat{A_1}=90^0-\widehat{C}=\widehat{B_1}$

Áp dụng công thức $S_{ABC}=\frac{1}{2}.AB.AC\sin A$ ta có:

$\frac{HM}{AM}=\frac{S_{FMH}}{S_{AFM}}=\frac{FH.\sin F_1}{FA.\sin F_2}=\frac{FH}{FA}.\frac{\sin B_1}{\sin H_1}$

$=\tan A_2.\sin B_1.\frac{1}{\sin H_1}$

$=\frac{BK}{AK}.\frac{HK}{BH}.\frac{BH}{BK}$

$=\frac{HK}{AK}$

$\Rightarrow HM.AK=HK.AM$

AH
Akai Haruma
Giáo viên
22 tháng 5 2021

Hình vẽ:

10 tháng 3 2022

???

 

a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

b: Ta có: ΔBAD=ΔBED

nên BA=BE

=>ΔBAE cân tại B

mà \(\widehat{ABE}=60^0\)

nên ΔABE đều