Cho biểu thức . Chứng tỏ rằng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M=(5+5^2)+...+(5^79+5^80)
M=30.1+...+5^78+(5^1+5^2)
M=30(1+...+5^78) /30
VẬY M / 30
M=(5+5^2)+5^2(5+5^2)+...+5^78(5+5^2)
=30(1+5^2+...+5^78) chia hết cho 30
\(B=8\left(1+8+8^2\right)+...+8^{19}\left(1+8+8^2\right)\)
\(=73\left(8+...+8^{19}\right)⋮73\)
Ta có:
72018-32018
=(74)504.72-(3504)4.32
=(...1).(...9)-(...1)-9
=(---9)-(..9)
=(..0)
Vì các số tận cùng là 0 thì chia hết cho 10 nên 72018-32018 chia hết cho 10 hay A chia hết cho 10
Vậy A chia hết cho 10
chu kì chữ số tận cùng của 8n là:2,4,6,8,...
Ta có:A=8^2015+8^2016+8^2017+8^2018
A=.....2+....6+......8+.......4
A=........20=.......0 chia hết cho 5
Vậy 8^2015+8^2016+8^2017+8^2018 chia hết cho 5.
\(A=3+3^2+3^3+...+3^{60}\)
\(\Rightarrow A=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{57}+3^{58}+3^{59}+3^{60}\right)\)
\(\Rightarrow A=3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+...+3^{57}\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=\left(3+3^5+...+3^{57}\right)\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=40\left(3+3^5+...+3^{57}\right)⋮40\)
A=3+32+33+...+360
A=3+32+33+...+360⇒A=(3+32+33+34)+(35+36+37+38)+...+(357+358+359+360)⇒A=(3+32+33+34)+(35+36+37+38)+...+(357+358+359+360)
⇒A=3(1+3+32+33)+35(1
Lời giải:
\(P^2=\frac{1.3}{2^2}.\frac{3.5}{4^2}.\frac{5.7}{6^2}...\frac{397.399}{398^2}.\frac{1.399}{400^2}\)
Xét thừa số tổng quát $\frac{n(n+2)}{(n+1)^2}=\frac{n^2+2n}{n^2+2n+1}<1$ với mọi $n$ tự nhiên.
$\Rightarrow \frac{1.3}{2^2}< 1; \frac{3.5}{4^2}<1;...; \frac{397.399}{398^2}<1$
$\Rightarrow P^2< 1.1....1.\frac{1.399}{400^2}=\frac{399}{400^2}< \frac{1}{400}$
$\Rightarrow P< \frac{1}{20}$