K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2017

Tương tự, HS tự làm

1 tháng 7 2022

a)Áp dụng HTL2 vào tam giác ABC cuông tại A, đường cao AH ta có:

AH2=BH.HC=9.16=144

<=>AH=√144=12((cm)

Áp dụng định lý Pytago vào tam giác vuông BHA ta có:

BA2=AH2+BH2=122+92=225

<=>BA=√225=15(cm)

Áp dụng định lý Pytago vào tam giác vuông CHA ta có:

CA2=AH2+CH2=122+162=20(cm)

Vậy AB=15cm,AC=20cm,AH=12cm

29 tháng 10 2015

ta có

\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)

\(a+b-2\sqrt{ab}\ge0\)

\(a+b\ge2\sqrt{ab}\)

\(\frac{a+b}{2}\ge\sqrt{ab}\)

25 tháng 12 2016

Ta có AH2=CH.BH=ab (1)

Gọi M là trung điểm của BC.

Xét tam giác AHM vuông tại H có AM là cạnh huyền --> AH\(\le\)AM (2)

Mà \(AM=\frac{BC}{2}=\frac{a+b}{2}\)(3)

Từ (1), (2) và (3) \(\Rightarrow a.b\le\frac{a+b}{2}\)

15 tháng 1 2017

Tam giác BDH vuông tại D có DM là đường trung tuyến nên:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

a: BC=BH+CH=25cm

Xét ΔABC vuông tại A có AH là đường cao

nên AB^2=BH*BC; AC^2=CH*BC; AH^2=HB*HC

\(AB=\sqrt{BH\cdot BC}=\sqrt{9\cdot25}=15\left(cm\right)\)

\(AC=\sqrt{16\cdot25}=20\left(cm\right)\)

\(AH=\sqrt{HB\cdot HC}=12\left(cm\right)\)

b: Xét tứ giác ADHE có

góc ADH=góc AEH=góc DAE=90 độ

=>ADHE là hình chữ nhật

a: BC=BH+CH=25cm

Xét ΔABC vuông tại A có AH là đường cao

nên AB^2=BH*BC; AC^2=CH*BC; AH^2=HB*HC

\(AB=\sqrt{BH\cdot BC}=\sqrt{9\cdot25}=15\left(cm\right)\)

\(AC=\sqrt{16\cdot25}=20\left(cm\right)\)

\(AH=\sqrt{HB\cdot HC}=12\left(cm\right)\)

b: Xét tứ giác ADHE có

góc ADH=góc AEH=góc DAE=90 độ

=>ADHE là hình chữ nhật

góc AEH=góc ADH=góc DAE=90 độ

=>ADHE là hình chữ nhật

góc NED=góc NEH+góc DEH

=góc DAH+góc NHE

=góc BAH+góc B=90 độ

=>NE vuông góc ED(1)

góc MDE=góc MDH+góc EDH

=góc MHD+góc EAH

=góc HAC+góc C=90 độ

=>DM vuông góc ED(2)

Từ (1), (2) suy ra ENMD là hình thang vuông

\(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

BH=6^2/10=3,6cm

=>DM=1,8cm

HC=8^2/10=6,4cm

=>EN=3,2cm

AH=6*8/10=4,8cm

=>ED=4,8cm

\(S_{ENMD}=\dfrac{1}{2}\cdot\left(EN+DM\right)\cdot ED=\dfrac{1}{2}\cdot\left(3,2+1,8\right)\cdot2,4=1,2\cdot5=6\left(cm^2\right)\)