Giúp mình làm bài số 4 mình cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khoảng cách thực tế của hai điểm ab là:
2500000x7,5=18750000(cm)=187,5 km
Đáp số 187,5 km
b) 250 km= 25 000 000cm
K/c 2 điểm trên bản đồ:
25 000 000 : 2 000 000= 12,5(cm)
Vì \(\left|4+2x\right|\ge0\) nên biểu thức |4 + 2x| = -4x vô nghiệm
Vậy \(x\in\phi\)
Em tách ra 1-2 bài/1 câu hỏi để mọi người hỗ trợ nhanh nhất nha!
11 c)
\(a^2+2\ge2\sqrt{a^2+1}\Leftrightarrow a^2+1-2\sqrt{a^2+1}+1\ge0\Leftrightarrow\left(\sqrt{a^2+1}-1\right)^2\ge0\) (luôn đúng)
12 a) Có a+b+c=1\(\Rightarrow\) (1-a)(1-b)(1-c)= (b+c)(a+c)(a+b) (*)
áp dụng BĐT cô-si: \(\left(b+c\right)\left(a+c\right)\left(a+b\right)\ge2\sqrt{bc}2\sqrt{ac}2\sqrt{ab}=8\sqrt{\left(abc\right)2}=8abc\) ( luôn đúng với mọi a,b,c ko âm )
b) áp dụng BĐT cô-si: \(c\left(a+b\right)\le\dfrac{\left(a+b+c\right)^2}{4}=\dfrac{1}{4}\)
Tương tự: \(a\left(b+c\right)\le\dfrac{1}{4};b\left(c+a\right)\le\dfrac{1}{4}\)
\(\Rightarrow abc\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\dfrac{1}{4}\dfrac{1}{4}\dfrac{1}{4}=\dfrac{1}{64}\)
Bài 2:
Gọi độ dài quãng đường AB là x(km)
(Điều kiện: x>0)
Thời gian đi từ A đến B là \(\dfrac{x}{25}\left(giờ\right)\)
Thời gian đi từ B về A là \(\dfrac{x}{30}\left(giờ\right)\)
Tổng thời gian cả đi lẫn về là \(3h40p=\dfrac{11}{3}\left(giờ\right)\) nên ta có phương trình:
\(\dfrac{x}{25}+\dfrac{x}{30}=\dfrac{11}{3}\)
=>\(\dfrac{6x+5x}{150}=\dfrac{11}{3}\)
=>\(\dfrac{11x}{150}=\dfrac{11}{3}\)
=>\(x=\dfrac{11}{3}:\dfrac{11}{150}=50\left(nhận\right)\)
Vậy: ĐỘ dài quãng đường AB là 50km
Bài 3:
1:
a: Sửa đề: ΔABC vuông tại A
Xét ΔCHA vuông tại H và ΔCAB vuông tại A có
\(\widehat{ACB}\) chung
Do đó: ΔCHA~ΔCAB
b: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=3^2+4^2=25\)
=>\(BC=\sqrt{25}=5\left(cm\right)\)
Xét ΔCAB có CD là phân giác
nên \(\dfrac{AD}{AC}=\dfrac{DB}{BC}\)
=>\(\dfrac{AD}{4}=\dfrac{DB}{5}\)
mà AD+DB=AB=3cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{4}=\dfrac{DB}{5}=\dfrac{AD+DB}{4+5}=\dfrac{3}{9}=\dfrac{1}{3}\)
=>\(AD=4\cdot\dfrac{1}{3}=\dfrac{4}{3}\left(cm\right);DB=5\cdot\dfrac{1}{3}=\dfrac{5}{3}\left(cm\right)\)
c: Xét ΔCAH có CI là phân giác
nên \(\dfrac{IH}{AI}=\dfrac{CH}{CA}\left(1\right)\)
Xét ΔCAB có CD là phân giác
nên \(\dfrac{AC}{BC}=\dfrac{AD}{DB}\left(2\right)\)
Ta có: ΔCHA~ΔCAB
=>\(\dfrac{CH}{CA}=\dfrac{CA}{CB}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\dfrac{CA}{CB}=\dfrac{IH}{IA}\)